吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1139-1151.doi: 10.13278/j.cnki.jjuese.20200014

• 地质工程与环境工程 • 上一篇    下一篇

基于三维激光扫描技术的岩质边坡泥化夹层空间分布和几何形态

刘文连1,2, 张家明2, 王志强1, 徐则民2   

  1. 1. 中国有色金属工业昆明勘察设计研究院有限公司, 昆明 650051;
    2. 昆明理工大学建筑工程学院, 昆明 650500
  • 收稿日期:2020-01-14 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 张家明(1984-),男,讲师,博士,主要从事岩土体工程地质特性方面的研究,E-mail:zjm_engeo@163.com E-mail:zjm_engeo@163.com
  • 作者简介:刘文连(1964-),男,教授级高级工程师,全国工程勘察设计大师,主要从事岩土体工程地质特性方面的研究,E-mail:lwenl702@sina.com
  • 基金资助:
    国家自然科学基金项目(41807258,41931294);中国有色金属工业昆明勘察设计研究院有限公司科技创新项目(2019YN05)

Spatial Distribution and Geometrical Morphology of Muddy Interlayer in Rock Slopes Based on Three-Dimensional Laser Scanning Technique

Liu Wenlian1,2, Zhang Jiaming2, Wang Zhiqiang1, Xu Zemin2   

  1. 1. Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co., Ltd., Kunming 650051, China;
    2. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2020-01-14 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41807258,41931294) and the Science and Technology Innovation Project of Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co.,Ltd. (2019YN05)

摘要: 为了定量研究泥化夹层的空间分布和几何形态,以云南省玉溪市生活垃圾焚烧发电厂高边坡局部开挖剖面为对象,利用徕卡ScanStation C10三维激光扫描仪和瑞典ROMER RA-7520-2六轴关节臂三维测量仪进行扫描,得到了开挖剖面和泥化夹层的原始点云数据;然后采用Cyclone和Geomagic Wrap软件对点云数据进行一系列处理,分析了泥化夹层的三维空间分布、层面产状、间距、层面粗糙度和几何形态。结果表明:大部分泥化夹层横向分布于整个扫描剖面,少数呈局部分布;泥化夹层的平均倾向为196.41°±5.51°,平均倾角为22.27°±2.23°,间距在3.7~49.1 cm之间,平均值为(20.4±12.0)cm;不同层位及同一层位不同横向位置的泥化夹层厚度都不等,最厚约20 mm,最薄小于1 mm;泥化夹层顶面局部典型区域的平面拟合偏差在-22.4~32.5 mm之间,沿夹层倾向的粗糙度系数在5.67~16.77之间,平均值为10.11±3.25;泥化夹层的表面积与体积之比在5.14~5.86 cm-1之间。运用三维激光扫描技术研究泥化夹层的空间分布和几何形态是可行的。玉溪市生活垃圾焚烧发电厂高边坡的泥化夹层具有宏观整体上相对平直、相互近似平行、非等距分布、间距小、层数多、厚度薄,细观上顶面粗糙底面相对光滑、三维形态复杂的特点。

关键词: 软弱夹层, 泥化夹层, 空间分布, 几何形态, 三维激光扫描仪

Abstract: The research on the spatial distribution of muddy interlayers is of great significance in engineering practice and science,however, the published works mainly focus on qualitative description. The objective of this work is to quantitatively investigate the spatial distribution and geometrical morphology of muddy interlayers. By taking the high slope excavation sections of Yunnan Yuxi municipal solid waste incineration power plant as an example, the point clouds of excavation sections and muddy interlayers were obtained by Leica ScanStation C10 3D laser scanner and ROMER RA-7520-2 arm 6-axis 3D measuring instrument, and the 3D spatial distribution, orientation, spacing, roughness, and geometrical morphology of muddy interlayers were analyzed after post-processing of the point cloud data using Cyclone and Geomagic Wrap software. The results show that most of the muddy interlayers are laterally distributed in the whole scanning section, and only a few are locally distributed. The mean inclination and mean dip angle of the muddy interlayers are 196.41°±5.51° and 22.27°±2.23°, respectively. The spacing varies from 3.7 to 49.1 cm with an average of (20.4±12.0) cm. The thickness of different lateral positions of muddy interlayers in different layers and the same layer is different, the thickest is about 20 mm, and the thinnest is less than 1 mm. For the typical area of the top surface of muddy interlayers, the plane fitting deviation is between -22.4 mm and 32.5 mm, and the roughness coefficient along the interlayer trend ranges from 5.67 to 16.77 with an average of 10.11±3.25. The ratio of surface area to volume of muddy interlayers is between 5.14 and 5.86 cm-1. These findings suggest that it is feasible to study the spatial distribution and geometrical morphology of muddy interlayers in rock slopes by using the 3D laser scanning technique. In the high slope of Yuxi municipal solid waste incineration power plant, at the macroscopic level, the muddy interlayers are characterized by relatively straight, approximately parallel to each other, non-isometric distribution, small spacing, many layers, and thin thickness, while at the microscopic level, the muddy interlayers have rough top surface with relatively smooth bottom and complex three-dimensional geometrical morphology.

Key words: soft interlayer, muddy interlayer, spatial distribution, geometrical morphology, three-dimensional laser scanning

中图分类号: 

  • P642
[1] 王在泉,张黎明,贺俊征. 泥化夹层对边坡工程稳定性影响及控制方法研究[J]. 青岛建筑工程学院学报,2004,25(4):1-5. Wang Zaiquan, Zhang Liming, He Junzheng. Influence of Mudded Intercalation on Slope Stability and Its Controlling[J]. Journal of Qingdao Institute of Architecture and Engineering, 2004, 25(4):1-5.
[2] 龚裔芳,金福喜,张可能,等. 红砂岩泥化夹层力学特性及其对边坡稳定性的影响[J]. 重庆交通大学学报(自然科学版),2010,29(2):220-223. Gong Yifang, Jin Fuxi, Zhang Keneng, et al. Influence on Slope Stability of Physical-Mechanical Property of Clayer Thin Interlayer in Red Sandstone[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010, 29(2):220-223.
[3] 白永健,王运生,葛华,等. 金沙江深切河谷百胜滑坡演化过程及成因机制[J].吉林大学学报(地球科学版),2019,49(6):1680-1688. Bai Yongjian,Wang Yunsheng,Ge Hua,et al. Formation Evolution and Genetic Mechanism of Baisheng Landslide in the Deep-Incised Valley of Jinsha River[J]. Journal of Jilin University (Earth Science Edition),2019,49(6):1680-1688.
[4] 牟会宠,石慧馨,叶珍久. "软弱夹层"对坝基岩体稳定的影响[J]. 地质科学,1975,10(3):265-278. Mu Huichong, Shi Huixin, Ye Zhenjiu. The Influence of Weak Interbed on the Stability of Rock Mass of Dam Foundation[J]. Scientia Geologica Sinica, 1975,10(3):265-278.
[5] 杜晓丽,宋宏伟,魏京胜. 地震对软弱夹层边坡稳定性影响数值模拟研究[J]. 三峡大学学报(自然科学版),2010,32(1):39-42. Du Xiaoli, Song Hongwei, Wei Jingsheng. Numerical Simulation Research on Stability of Slope with Weak Sandwich Under Seismic Loadings[J]. Journal of China Three Gorges University (Natural Sciences), 2010, 32(1):39-42.
[6] 张志强,李宁,陈方方,等. 软弱夹层厚度模拟实用方法及其应用[J]. 岩石力学与工程学报,2010,29(增刊1):2637-2644. Zhang Zhiqiang, Li Ning, Chen Fangfang, et al. A Practical Method to Simulate Thickness of Weak Interbed and Its Application[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup.1):2637-2644.
[7] 简文星,殷坤龙,马昌前,等. 万州侏罗纪红层软弱夹层特征[J]. 岩土力学,2005,26(6):901-905. Jian Wenxing, Yin Kunlong, Ma Changqian, et al. Characteristics of Incompetent Beds in Jurassic Red Clastic Rocks in Wanzhou[J]. Rock and Soil Mechanics, 2005, 26(6):901-905.
[8] 朱赛楠,殷跃平,李滨. 大型层状基岩滑坡软弱夹层演化特征:以重庆武隆鸡尾山滑坡为例[J]. 工程地质学报,2018,26(6):1638-1647. Zhu Sainan, Yin Yueping, Li Bin. Evolution Characteristics of Weak Intercalation in Massive Layered Rockslides:A Case Study of Jiweishan Rockslide in Wulong, Chongqing[J]. Journal of Engineering Geology, 2018, 26(6):1638-1647.
[9] 肖拥军,殷坤龙,黄学斌,等. 巴东新城白土坡深层岩体软弱夹层地质特征[J]. 水文地质工程地质,2007,34(6):72-75. Xiao Yongjun, Yin Kunlong, Huang Xuebin, et al. Weak Intercalated Layers' Geologic Feature in Deep-Seated Rock Mass of Baitupo Slope in Badong New Town-Site of the Three Gorges Reservoir[J]. Hydrogeology and Engineering Geology, 2007,34(6):72-75.
[10] 王东华. 宝珠寺水电工程坝址区泥化夹层的工程地质研究[J]. 西北水电技术,1986(2):1-13. Wang Donghua. Research on the Engineering Geological Characteristics of Siltized Intercalation in Baozhusi Hydroelectric Dam Site[J]. Northwest Hydropower, 1986(2):1-13.
[11] 刘会源. 黄河龙门水库坝址区泥化夹层分布规律的初步研究[J]. 人民黄河,1987(3):59-64. Liu Huiyuan. Preliminary Study on Distribution of Clay Interactions in Longmen Dam Site[J]. Yellow River, 1987(3):59-64.
[12] 凌湖南,史尚尧. 上犹江大坝基础板岩破碎泥化夹层及其对大坝稳定的影响[J]. 大坝与安全,1990(2/3):48-56. Ling Hunan, Shi Shangyao. Siltized Intercalation Interbeded in Slate Fragmentation and Its Controlling on Dam Stability in Shangyou River Dam Foundation[J]. Large Dam and Safety, 1990(2/3):48-56.
[13] 董秀军,黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J]. 岩石力学与工程学报,2006,25(增刊2):3629-3635. Dong Xiujun, Huang Runqiu. Application of 3D Laser Scanning Technology to Geologic Survey of High and Steep Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup.2):3629-3635.
[14] 徐进军,王海城,罗喻真,等. 基于三维激光扫描的滑坡变形监测与数据处理[J]. 岩土力学,2010,31(7):2188-2191. Xu Jinjun, Wang Haicheng, Luo Yuzhen, et al. Deformation Monitoring and Data Processing of Landslide Based on 3D Laser Dcanning[J]. Rock and Soil Mechanics, 2010, 31(7):2188-2191.
[15] 马俊伟,唐辉明,胡新丽,等. 三维激光扫描技术在滑坡物理模型试验中的应用[J]. 岩土力学,2014,35(5):1495-1505. Ma Junwei, Tang Huiming, Hu Xingli, et al. Application of 3D Laser Scanning Technology to Landslide Physical Model Test[J]. Rock and Soil Mechanics, 2014, 35(5):1495-1505.
[16] 陈致富,陈德立,杨建学. 三维激光扫描技术在基坑变形监测中的应用[J]. 岩土工程学报,2012,34(增刊):557-559. Chen Zhifu, Chen Deli, Yang Jianxue. Application of Three-Dimensional Laser Scanning Technique in Deformation Monitoring of Excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Sup.):557-559.
[17] 王凤艳,赵明宇,王明常,等.无人机摄影测量在矿山地质环境调查中的应用[J].吉林大学学报(地球科学版),2020,50(3):866-874. Wang Fengyan, Zhao Mingyu, Wang Mingchang, et al. Application of UAV Photogrammetry in Mine Geological Environment Survey[J]. Journal of Jilin University (Earth Science Edition),2020,50(3):866-874.
[18] 董秀军,黄润秋. 三维激光扫描测量在汶川地震后都汶公路快速抢通中的应用[J]. 工程地质学报,2008,16(6):774-779. Dong Xiujun, Huang Runqiu. Application of 3D Laser Scanner in Making Duwen Road Travelable in Short Term After Wenchuan Earthquake[J]. Journal of Engineering Geology, 2008,16(6):774-779.
[19] 何秉顺,丁留谦,孙平. 三维激光扫描系统在岩体结构面识别中的应用[J]. 中国水利水电科学研究院学报,2007,5(1):43-48. He Bingshun, Ding Liuqian, Sun Ping. The Application of 3D Laser Scanning Technology in Rock Joint Sets Identification[J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(1):43-48.
[20] 许度,冯夏庭,李邵军,等. 基于三维激光扫描的锦屏地下实验室岩体变形破坏特征关键信息提取技术研究[J]. 岩土力学,2017,38(增刊1):488-495. Xu Du, Feng Xiating, Li Shaojun, et al. Research on Key Information Extraction of Rock Mass Deformation and Failure Characteristics in Jinping Underground Laboratory Based on 3D Laser Scanning Technique[J].Rock and Soil Mechanics, 2017, 38(Sup.1):488-495.
[21] 许度,冯夏庭,李邵军,等. 激光扫描隧洞变形与岩体结构面测试技术及应用[J]. 岩土工程学报,2018,40(7):1336-1343. Xu Du, Feng Xiating, Li Shaojun, et al. In-Situ Testing Technique for Tunnel Deformation and Structural Plane of Rock Mass Based on Contactless Laser Scanning Method and Its Application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7):1336-1343.
[22] 葛云峰,夏丁,唐辉明,等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报,2017,36(12):3050-3061. Ge Yunfeng, Xia Ding, Tang Huiming, et al. Intelligent Identification and Extraction of Geometric Properties of Rock Discontinuities Based on Terrestrial Laser Scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12):3050-3061.
[23] 姜丽丽,吴勇,尹恒,等. 三维激光扫描技术在地表巨粒组粒度分析中的应用[J]. 地质灾害与环境保护,2012,23(1):103-107. Jiang Lili, Wu Yong, Yin Heng, et al. Applying 3D Laser Scanning in Granularity Analysis of the Surface Giant Particle[J]. Journal of Geological Hazards and Environment Preservation, 2012, 23(1):103-107.
[24] 游志诚,王亮清,杨艳霞,等. 基于三维激光扫描技术的结构面抗剪强度参数各向异性研究[J]. 岩石力学与工程学报,2014,33(增刊1):3003-3008. You Zhicheng, Wang Liangqing, Yang Yanxia, et al. Anisotropic Research on Strength Parameters of Discontinuity Based on Three-Dimensional Laser Scanning Technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.1):3003-3008.
[25] 马福贵,宋元福,然见多杰,等. 三维激光扫描技术在地质灾害调查中的应用[J]. 中国地质灾害与防治学报,2017,28(3):101-105. Ma Fugui, Song Yuanfu, Ran Jianduojie, et al. Application of the Three-Dimensional Laser Scanning in the Investigation of Geologic Hazard[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3):101-105.
[26] 赵志锐,刘文连,王志强. 玉溪市生活垃圾焚烧发电项目边(滑)坡治理工程勘察报告[R].昆明:中国有色金属工业昆明勘察设计研究院有限公司,2019. Zhao Zhirui, Liu Wenlian, Wang Zhiqiang. Reconnaissance Report on Landslide at Yuxi Municipal Solid Waste Incineration Power Plant[R]. Kunming:Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co Ltd,2019.
[27] 谢雄耀,卢晓智,田海洋,等. 基于地面三维激光扫描技术的隧道全断面变形测量方法[J]. 岩石力学与工程学报,2013,32(11):2214-2224. Xie Xiongyao, Lu Xiaozhi, Tian Haiyang, et al. Deveopment of a Modeling Method for Monitoring Tunnel Deformation Based on Terrestrial 3D Laser Scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11):2214-2224.
[28] 胡超,周宜红,赵春菊,等. 基于三维激光扫描数据的边坡开挖质量评价方法研究[J]. 岩石力学与工程学报,2014,33(增刊2):3979-3984. Hu Chao, Zhou Yihong, Zhao Chunjiu, et al. Slope Excavation Quality Evaluation Based on Three-Dimensinal Laser Scan Data[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2):3979-3984.
[29] 李化,黄润秋. 岩石结构面粗糙度系数JRC定量确定方法研究[J]. 岩石力学与工程学报,2014,33(增刊2):3489-3497. Li Hua, Huang Runqiu. Method of Quantitative Determination of Joint Roughness Coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2):3489-3497.
[30] 夏德成. 小浪底水库坝址区地质条件对泥化夹层空间分布的控制作用[J]. 水利水电技术,1991(9):50-54. Xia Decheng. Geological Conditions and Its Control on the Distribution of Mudded Intercalation in Xiaolangdi Project[J]. Water Resources and Hydropower Engineering, 1991(9):50-54.
[1] 曹凤娟, 贾丽华, 李梦莹, 王松阳. 辽宁地区主要断裂活动性和地震危险性评估[J]. 吉林大学学报(地球科学版), 2021, 51(1): 286-295.
[2] 代杰瑞,喻超,张杰,宁振国,王增辉,程鑫. 山东半岛蓝色经济区土壤有机碳储量及固碳潜力分析[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1659-1668.
[3] 孙伟,樊太亮,赵志刚,王宏语,高志前,段锐晖. 乌石凹陷古近系层序地层特征及充填演化[J]. J4, 2008, 38(2): 233-0239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[3] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[4] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[5] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[6] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[7] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[8] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[9] 殷 文,印兴耀, 张繁昌. 基于并行遗传算法的地震属性优化研究[J]. J4, 2005, 35(05): 672 -676 .
[10] 魏 喜,邓晋福,陈亦寒. 南海盆地中生代海相沉积地层分布特征及勘探潜力分析[J]. J4, 2005, 35(04): 456 -0461 .