吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1152-1159.doi: 10.13278/j.cnki.jjuese.20200042

• 地质工程与环境工程 • 上一篇    下一篇

黄土地区边坡虹吸排水孔间距优化

曹长鑫, 孙红月   

  1. 浙江大学海洋学院, 浙江 舟山 316021
  • 收稿日期:2020-02-24 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 孙红月(1970-),女,教授,博士,主要从事地质灾害防治研究,E-mail:shy@zju.edu.cn E-mail:shy@zju.edu.cn
  • 作者简介:曹长鑫(1996-),男,硕士研究生,主要从事地质灾害防治研究,E-mail:caochangxin@zju.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFC1504704)

Optimization of Siphon Drainage Hole Spacing on Slope in Loess Region

Cao Changxin, Sun Hongyue   

  1. Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
  • Received:2020-02-24 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Key R&D Program of China (2018YFC1504704)

摘要: 为使虹吸排水技术在黄土地区边坡应用中取得更好效果,考虑黄土各向异性进行虹吸排水孔间距设计,基于Neuman理论,利用土质渗透系数差异程度考虑黄土各向异性渗流规律,引用拦截比的概念,并结合降深与影响半径的关系,推导出了一种适合各向异性土体的虹吸排水间距解析解。结果表明:虹吸排水孔间距不仅与渗透系数和降深相关,还与竖向渗透系数与水平渗透系数之比有着较大的关系。在黑方台黄土地区的实际工程案例中,0.4 m为虹吸排水孔的最优间距。数值模拟及解析计算表明,单排排水孔间距在0.4 m的情况下拦截比为49.7%,满足工程实际要求。

关键词: 虹吸排水, 孔间距, 影响半径, 各向异性, 边坡

Abstract: In order to achieve better effect of siphon drainage technology in slope application in a loess area, the design of siphon drainage hole spacing considering loess anisotropy was carried out. Based on Neuman theory, according to the different degree of soil permeability coefficient, the anisotropic seepage law of loess was considered, the concept of interception ratio was introduced, and the relationship between depth drop and influence radius was combined. An analytical solution of siphon drainage spacing suitable for anisotropic soils was derived. The results show that the spacing of siphon drainage holes is not only related to permeability coefficient and depth drop, but also to the ratio of vertical permeability coefficient to horizontal permeability coefficient. In the actual case project in Heifangtai loess area, 0.4 m is the optimal distance between the siphon drainage holes. The numerical simulation and analytical calculation show that the interception ratio (49.7%) meets the practical requirements when the spacing of single row of drainage holes is 0.4 m.

Key words: siphon drainage, hole spacing, radius of influence, anisotropy, slope

中图分类号: 

  • P33
[1] 徐张建,林在贯,张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, 26(7):1297-1312. Xu Zhangjian, Lin Zaiguan, Zhang Maosheng. Loess in China and Loess Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7):1297-1312.
[2] Xu L, Dai F C, Gong Q M, et al. Irrigation-Induced Loess Flow Failure in Heifangtai Platform, North-West China[J]. Environmental Earth Sciences, 2012, 66(6):1707-1713.
[3] Deng L, Fan W, Yin Y, et al. Case Study of a Collapse Investigation of Loess Sites Covered by Very Thick Loess-Paleosol Interbedded Strata[J]. International Journal of Geomechanics, 2018, 18(11):05018009.
[4] 王家鼎, 惠泱河. 黑方台台缘灌溉水诱发黄土滑坡群的系统分析[J]. 水土保持通报, 2001, 21(3):10-12. Wang Jiading, Hui Yanghe. System Analysis of Heifangtai Loess Landslide in Crows Induced by Irrigated Water[J]. Bulletin of Soil and Water Conservation, 2001,21(3):10-12.
[5] 陈永珍,吴斌,杨帆,等. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2):485-492. Chen Yongzhen, Wu Bin, Yang Fan, et al, Coupled Numerical Simulation of Seepage and Deformation of Interceptingand Drainaging Water with Compressed Air[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2):485-492.
[6] 熊晓亮,孙红月,张世华,等. 高扬程虹吸保障条件分析与合理管径选择数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5):1595-1601. Xiong Xiaoliang, Sun Hongyue, Zhang Shihua, et al. Analysis of Condition of Ensuring High-Lift Siphon Drainage and Numerical Simulation of Choice of Optimum Diameter[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5):1595-1601.
[7] 吴纲,谢威,严鑫,等. 虹吸水流作用下的土柱运动特性及虹吸管道防淤堵措施[J]. 吉林大学学报(地球科学版), 2019, 49(5):1398-1404. Wu Gang, Xie Wei, Yan Xin, et al. Motion Characteristics of Clay Column Under Action of Siphon Flow and Anti-Clogging Measures[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5):1398-1404.
[8] 尚岳全,蔡岳良,魏振磊,等. 滑坡虹吸排水方法[J]. 工程地质学报, 2015, 23(4):706-711. Shang Yuequan, Cai Yueliang, Wei Zhenlei, et al, Siphon Drainage Method for Landslide Prevention[J]. Journal of Engineering Geology, 2015, 23(4):706-711.
[9] Sun H, Wang D, Shang Y, et al. An Improved Siphon Drainage Method for Slope Stabilization[J]. Journal of Mountain Science, 2019, 16(3):701-713.
[10] 吴梦萍,孙红月,梅成. 边坡虹吸排水孔间距研究[J]. 自然灾害学报, 2017, 26(2):40-46. Wu Mengping,Sun Hongyue,Mei Cheng. Analysis of Slope Siphon Drainage Hole Spacing[J]. Journal of Natural Disasters, 2017, 26(2):40-46.
[11] 任姗姗. 边坡高扬程虹吸排水效果与影响因素研究[D]. 杭州:浙江大学, 2014:56. Ren Shanshan. Research on the Effect and Influencing Factors of Slope High-Lift Siphon Drainage[D]. Hangzhou:Zhejiang University, 2014:56.
[12] Neuman P S. Theory Flow in Unconfined Aquifers Considering Delayed Response the Water Table[J]. Water Resources Research, 1972, 4(8):1030-1044.
[13] Neuman P S. Aquifers Considering Delayed Gravity Response[J]. Water Resources Research, 1974, 2(10):303-312.
[14] 李凤玲,朝伦巴根,高瑞忠. 基于Nueman理论获取潜水含水层系统参数的简化方法[J]. 工程勘察, 2008(4):33-37. Li Fengling, Chaolun Bagen, Gao Ruizhong. A Simplified Method to Obtain the Parameters of Underwater Aquifer System Based on Nueman Theory[J]. Geotechnical Investigation & Surveying, 2008(4):33-37.
[15] 宫志强,田西昭,刘伟江,等. 抽出-处理技术抽出污染地下水:抽出效率及抽出终点[J]. 吉林大学学报(地球科学版), 2020, 50(4):1139-1150. Gong Zhiqiang,Tian Xizhao,Liu Weijiang,et al. Pumping Treatment Technology to Pump out Contaminated Groundwater:Extraction Efficiency and Extraction Endpoint[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4):1139-1150.
[16] 陈崇希. 地下水动力学[M]. 武汉:中国地质大学出版社, 2011. Chen Chongxi. Underground Water Dynamics[M]. Wuhan:China University of Geosciences Press,2011.
[17] Zhang F, Wang G. Effect of Irrigation-Induced Densification on the Post-Failure Behavior of Loess Flowslides Occurring on the Heifangtai Area, Gansu, China[J]. Engineering Geology, 2018, 236:111-118.
[18] Wen B, Yan Y. Influence of Structure on Shear Characteristics of the Unsaturated Loess in Lanzhou, China[J]. Engineering Geology, 2014, 168:46-58.
[19] Xu L, Dai F C, Tu X B, et al. Occurrence of Landsliding on Slopes Where Flowsliding Had Previously Occurred:An Investigation in a Loess Platform, North-West China[J]. Catena, 2013, 104:195-209.
[20] 潘攀. 黑方台滑坡机理及防治对策研究[D]. 杭州:浙江大学, 2017:144. Pan Pan. Study on Mechanism and Treatment of Landslide in Heifangtai[D] Hangzhou:Zhejiang University,2017:144.
[21] 梁燕,邢鲜丽,李同录,等. 晚更新世黄土渗透性的各向异性及其机制研究[J]. 岩土力学, 2012, 33(5):1313-1318. Liang Yan, Xing Xianli, Li Tonglu, et al. Study of the Anisotropic Permeability and Mechanism of Q3 Loess[J]. Rock and Soil Mechanics, 2012, 33(5):1313-1318.
[22] Pan P, Shang Y, Lue Q, et al. Periodic Recurrence and Scale-Expansion Mechanism of Loess Landslides Caused by Groundwater Seepage and Erosion[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2):1143-1155.
[1] 黄达, 马昊, 石林. 反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1770-1782.
[2] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[3] 张海清, 贾会会, 聂庆科. 土体抗拉强度对均质边坡稳定性的影响[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1324-1337.
[4] 徐文刚, 余旭荣, 年廷凯, 曹琦, 曹爱武, 裴振伟. 基于FLAC3D的三维边坡稳定性强度折减法计算效率改进算法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1347-1355.
[5] 吕建航, 杨忠年, 时伟, 李国玉, 凌贤长, 张莹莹. 冻融循环下加筋膨胀土边坡稳定性模型试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1587-1596.
[6] 陈祥忠, 王斌. 基于岩石物理模型的裂缝型储层AVOA反演方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 266-276.
[7] 冯凯, 秦策. 大地电磁(MT)自适应有限元各向异性正演[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1887-1896.
[8] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[9] 洪勃, 李喜安, 王力, 李林翠. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1389-1397.
[10] 肖汉, 王德利. 基于快速匹配法的VTI介质走时计算[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1160-1168.
[11] 胡高建, 杨天鸿, 张飞. 抚顺西露天矿南帮边坡破坏机理及内排压脚措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1082-1092.
[12] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[13] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[14] 李论基, 姚青青, 安玉科. 老滑坡路段路堑开挖与超前支护效果[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1767-1777.
[15] 杨志龙, 殷长春, 张博, 刘云鹤, 任秀艳, 惠哲剑. 全拖曳式深海直流电阻率法三维任意各向异性正演模拟[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1845-1853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .