吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1863-1871.doi: 10.13278/j.cnki.jjuese.20200066
黄炎1, 王庆宾1, 李国强2, 冯进凯1, 谭勖立1
Huang Yan1, Wang Qingbin1, Li Guoqiang2, Feng Jinkai1, Tan Xuli1
摘要: 无人飞行器在飞行过程中受地球外部扰动引力影响,对其精确控制需要计算飞行轨迹点扰动引力。为有效恢复地球外部引力场,常采用地球重力场位系数模型进行计算,但其计算耗时随模型阶数的升高而呈指数增加。本文提出一种扰动引力矢量计算的向量化方法,推导出利用地球重力场模型计算扰动引力三分量的向量化表达公式,并利用CUDA(compute unified device architecture)异构并行算法进行并行化以达到快速计算单点扰动引力的目的。通过仿真实验可知,本文所提方法可有效减少单点扰动引力计算耗时,利用跨阶次递推法进行单点计算加速比可达8以上,最高可达13.20;利用Belikov递推法进行单点计算加速比可达6以上,最高可达8.99。
中图分类号:
[1] 范昊鹏,李姗姗.局部区域模型重力异常快速算法研究[J].大地测量与地球动力学,2013,33(6):28-30. Fan Haopeng, Li Shanshan. Study on a Fast Algorithm for Model Gravity Anomalies in Local Areas[J]. Journal of Geodesy and Geodynamics, 2013,33(6):28-30. [2] Sandwell D T, Müller R D, Smith W H F, et al. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346:65-67. [3] 冯进凯,王庆宾,黄炎,等. 基于局部重力场建模的Tikhonov正则化点质量核径向基函数方法[J].吉林大学学报(地球科学版),2019, 49(2):569-577. Feng Jinkai, Wang Qingbin, Huang Yan, et al. Point-Mass Kernel RBF Model Based on Tikhonov Regularization[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):569-577. [4] Khosro Ghobadi-Far, Mohammad Ali Sharifi, Nico Sneeuw. 2D Fourier Series Representation of Gravitational Functionals in Spherical Coordinates[J]. Journal of Geodesy, 2016, 90(9):871-881. [5] 王庆宾,马国元,王永收,等.全球空间扰动引力快速FFT计算效能分析[C]//国家安全地球物理.西安:西安地图出版社,2015:55-59. Wang Qingbin, Ma Guoyuan, Wang Yongshou, et al. Analysis of Fast Computational Efficiency of Global Disturbing Gravity[C]//National Security Geophysics. Xi'an:Xi'an Map Press, 2015:55-59. [6] 王昱. 扰动引力的快速计算及其对落点偏差的影响[D].长沙:国防科学技术大学,2002. Wang Yu. Fast Calculation of Perturbation Gravity and Its Effect on Landing Point Deviation[D].Changsha:National University of Defense Science and Technology, 2002 [7] 李红伟.地球外部空间扰动引力并行计算[J].指挥控制与仿真,2013,35(3):100-103. Li Hongwei. Parallel Method for the Disturbing Gravity of the Outside Space[J]. Command Control & Simulation, 2013, 35(3):100-103. [8] 黄佳喜.扰动重力场快速(并行)计算方法研究[D].郑州:信息工程大学,2017. Huang Jiaxi. Research on Fast (Parallel) Computing of Disturbing Gravity[D]. Zhengzhou:Information Engineering University, 2017. [9] René Forsberg. The Use of Spectral Techniques in Gravity Field Modelling:Trends and Perspectives[J]. Physics and Chemistry of the Earth,1998, 23(1):31-39. [10] 周蓓,黄永忠,许瑾晨,等. 向量数学库的向量化方法研究[J].计算机科学,2019,46(1):320-324. Zhou Bei, Huang Yongzhong, Xu Jinchen, et al. Study on SIMD Method of Vector Math Library[J]. Cumputer Science,2019, 46(1):320-324. [11] Gene D R, Amdahl M. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities[Z]. 1967. [12] 刘文志.并行算法设计与性能优化[M].北京:机械工业出版社,2015. Liu Wenzhi. Parallel Computing and Performance Optimization[M]. Beijing:Machinery Industry Press, 2015. [13] Yu Zhihui. High Performance Parallel Programming with MPI[M]. Beijing:Tsinghua University Press, 2001. [14] Nvidia. Nvidia Tesla P100-the Most Advanced Datacenter Accelerator Ever Built Featuring Pascal GP100, the World's Fastest GPU[Z]. Nvidia Whitepaper,2016, v01.1(Nvidia WP-08019-001). [15] Girish Sharma, Abhishek Agarwala, Baidurya Bhattacharya. A Fast Parallel Gauss Jordan Algorithm for Matrix Inversion Using CUDA[J]. Computers & Structures,2013, 128:31-37. [16] Christian Hirt, Sten Claessens, Thomas Fecher, et al. New Ultrahigh-Resolution Picture of Earth's Gravity Field[J]. Geophysical Research Letters,2013, 40(16):4279-4283. [17] 欧阳明达,张敏利,于亮.采用Belikov列推和跨阶次递推方法计算超高阶缔合勒让德函数[J].测绘工程,2017,26(7):12-15. Ouyang Mingda, Zhang Minli, Yu Liang. Calculating the Ultra-High-Qrder Associated Legendre Functions by Belikov Column Method and Recursive Method Between Every Other Order and Degree[J]. Engineering of Surveying and Mapping, 2017, 26(7):12-15. [18] Christopher J, Jong K L, Jay H K. On the Computation and Approximation of Ultra-High-Degree Spherical Harmonic Series[J]. Journal of Geodesy,2007, 81(9):603-615 [19] 吴星,刘雁雨. 多种超高阶次缔合勒让德函数计算方法的比较[J]. 测绘科学技术学报,2006(3):188-191. Wu Xing, Liu Yanyu. Comparison of Computing Methods of the Ultra-High Degree and Order[J]. Journal of Geomatics Science and Technology,2006(3):188-191. [20] 范宏涛,郭春喜,王小华,等.超高阶重力场模型EIGEN-6C2适应性分析[J].测绘科学,2015,40(9):18-22. Fan Hongtao,Guo Chunxi,Wang Xiaohua,et al. Adaptability Analysis on Ultra-High-Gravity Model EIGEN-6C2 in Chinese Coastal Zone[J]. Science of Surveying and Mapping, 2015, 40(9):18-22. |
[1] | 韩利, 韩立国, 李翔, 王德利, 崔杰. 二阶声波方程频域PML边界条件及频域变网格步长并行计算[J]. J4, 2011, 41(4): 1226-1232. |
[2] | 潘宏勋,方伍宝. 基于PC机群波动方程叠前深度偏移的并行计算策略[J]. J4, 2008, 38(4): 708-0712. |
[3] | 殷 文,印兴耀, 张繁昌. 基于并行遗传算法的地震属性优化研究[J]. J4, 2005, 35(05): 672-676. |
|