吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1853-1862.doi: 10.13278/j.cnki.jjuese.20200053

• 地质工程与环境工程 • 上一篇    下一篇

煤化工渣高效吸附去除水中全氟辛酸

刘娜1,2, 王金鑫1,2, 焦昕倩1,2, 雒峰3,4   

  1. 1. 吉林大学新能源与环境学院, 长春 130021;
    2. 教育部地下水资源与环境重点实验室(吉林大学), 长春 130021;
    3. 吉林大学材料科学与工程学院, 长春 130022;
    4. 教育部汽车材料实验室(吉林大学), 长春 130022
  • 收稿日期:2020-04-07 出版日期:2021-11-26 发布日期:2021-11-24
  • 通讯作者: 雒锋(1986-),男,高级工程师,主要从事固体废弃物再利用方面的研究,E-mail:luofeng@jlu.edu.cn E-mail:luofeng@jlu.edu.cn
  • 作者简介:刘娜(1977-),女,教授,博士生导师,主要从事环境污染治理与修复方面的研究,E-mail:liuna@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41572217);国家"111"项目(B16020)

Removal of Perfluorooctanoic Acid (PFOA) in Aqueous Solution Using Highly Adsorptive Coal Chemical Slag

Liu Na1,2, Wang Jinxin1,2, Jiao Xinqian1,2, Luo Feng3,4   

  1. 1. College of New Energy and Environment, Jilin University, Changchun 130021, China;
    2. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China;
    3. School of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    4. Key Laboratory of Automobile Materials(Jilin University), Ministry of Education, Changchun 130022, China
  • Received:2020-04-07 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41572217) and the "111" Project of China (B16020)

摘要: 为高效快速去除水中全氟辛酸,选择工业废物煤化工渣对全氟辛酸进行吸附去除探究。采用不同的处理方法制备了4种煤化工渣(粒径从大到小为CGA1、CGA2、CGA3和CGA4),研究其在水溶液中的全氟辛酸吸附性能。利用扫描电子显微镜(SEM)、拉曼光谱、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对4种煤化工渣的结构特征进行表征分析,并考察了全氟辛酸初始质量浓度和初始pH对吸附进程的影响。实验结果表明:煤化工渣对全氟辛酸有高效的吸附能力,伪二级动力学模型和Langmuir等温模型可以较好地描述4种煤化工渣对全氟辛酸的吸附行为及过程,其中CGA4去除全氟辛酸的最大吸附量为25.51 mg/g;随着全氟辛酸溶液初始质量浓度升高,煤化工渣对全氟辛酸的吸附容量逐渐增加;初始pH对CGA3和CGA4的影响微弱,CGA1和CGA2在酸性条件下显示出更优越的吸附性能。由此得出,4种煤化工材料中粒径最小的CGA4具有最优的全氟辛酸去除能力且基本不受pH限制。FTIR分析表明,吸附过程中氢键的形成占主导地位,XPS和Zeta电位检测结果表明,物理吸附和静电吸附在去除过程中也发挥了重要作用。

关键词: 煤化工渣, 全氟辛酸, 吸附, 废物利用

Abstract: Industrial waste coal chemical residues were selected as absorbent to remove perfluorooctanoic acid (PFOA) in water. Four kinds of coal chemical slag (particle size range from large to small was CGA1, CGA2, CGA3, and CGA4) prepared by different treatment methods were used to evaluate their sorption performance for PFOA. Scanning electron microscope (SEM), Raman, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the structures of the four kinds of coal chemical slag, and the effects of initial concentration and pH of the PFOA solution on the adsorption process were investigated. The results showed that the absorbents had high efficiency for PFOA removal. The adsorption was well described by the pseudo-second-order kinetic model and the Langmuir isothermal model. With the increase of the initial concentration of PFOA solution, the adsorption capacity of the coal chemical slag for PFOA increased gradually. The initial pH value had almost no impact on CGA3 and CGA4; While for CGA1 and CGA2, it showed better adsorption performance under acidic conditions than alkaline conditions. It is concluded that CGA4 (the smallest particle size) has the best PFOA removal ability and is almost unrestricted by pH. The maximum adsorption capacity of CGA4 is 25.51 mg/g. The FTIR analysis suggested that the formation of hydrogen bonds dominates the adsorption process. The results of XPS and zeta potential showed that physical and electrostatic adsorption also plays important roles in the removal progress. Therefore, coal chemical slag can be used as a promising adsorbent to remove the difficult-to-treat pollutants and promote the recycling of waste and sustainable development.

Key words: coal chemical slag, perfluorooctanoic acid, adsorption, waste disposal

中图分类号: 

  • X705
[1] Qian J, Shen M, Wang P, et al. Perfluorooctane Sulfonate Adsorption on Powder Activated Carbon:Effect of Phosphate (P) Competition, pH, and Temperature[J]. Chemosphere, 2017, 182:215-222.
[2] Santos A, Rodríguez S, Pardo F, et al. Use of Fenton Reagent Combined with Humic Acids for the Removal of PFOA from Contaminated Water[J]. Science of the Total Environment, 2016, 563:657-663.
[3] Zhang D, Luo Q, Gao B, et al. Sorption of Perfluorooctanoic Acid, Perfluorooctane Sulfonate and Perfluoroheptanoic Acid on Granular Activated Carbon[J]. Chemosphere, 2016, 144:2336-2342.
[4] Maimaiti A, Deng S, Meng P, et al. Competitive Adsorption of Perfluoroalkyl Substances on Anion Exchange Resins in Simulated Afff-Impacted Groundwater[J]. Chemical Engineering Journal, 2018, 348:494-502.
[5] Appleman T D, Dickenson E R V, Bellona C, et al. Nanofiltration and Granular Activated Carbon Treatment of Perfluoroalkyl Acids[J]. Journal of Hazardous Materials, 2013, 260:740-746.
[6] Du Z, Deng S, Bei Y, et al. Adsorption Behavior and Mechanism of Perfluorinated Compounds on Various Adsorbents:A Review[J]. Journal of Hazardous Materials, 2014, 274:443-454.
[7] Zhi Y, Liu J. Surface Modification of Activated Carbon for Enhanced Adsorption of Perfluoroalkyl Acids from Aqueous Solutions[J]. Chemosphere, 2016, 144:1224-1232.
[8] Ochoa-Herrera V, Sierra-Alvarez R. Removal of Perfluorinated Surfactants by Sorption onto Granular Activated Carbon, Zeolite and Sludge[J]. Chemosphere, 2008, 72(10):1588-1593.
[9] Yang B, Han Y, Yu G, et al. Efficient Removal of Perfluoroalkyl Acids (PFAAS) from Aqueous Solution by Electrocoagulation Using Iron Electrode[J]. Chemical Engineering Journal, 2016, 303:384-390.
[10] Guo H, Liu Y, Ma W, et al. Surface Molecular Imprinting on Carbon Microspheres for Fast and Selective Adsorption of Perfluorooctane Sulfonate[J]. Journal of Hazardous Materials, 2018, 348:29-38.
[11] Hisao H, Ari Y, Etsuko H, et al. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant[J]. Environmental Science & Technology, 2005, 39(7):2383-2388.
[12] Xue A, Yuan Z W, Sun Y, et al. Electro-Oxidation of Perfluorooctanoic Acid by Carbon Nanotube Sponge Anode and the Mechanism[J]. Chemosphere, 2015, 141:120-126.
[13] Kucharzyk K H, Darlington R, Benotti M, et al. Novel Treatment Technologies for Pfas Compounds:A Critical Review[J]. Journal of Environmental Management, 2017, 204:757-764.
[14] Liu J, Li C, Qu R, et al. Kinetics and Mechanism Insights into the Photodegradation of Hydroperfluorocarboxylic Acids in Aqueous Solution[J]. Chemical Engineering Journal, 2018, 348:644-652.
[15] Tang H, Xiang Q, Lei M, et al. Efficient Degradation of Perfluorooctanoic Acid by Uv-Fenton Process[J]. Chemical Engineering Journal, 2012, 184:156-162.
[16] Park S, Zenobio J E, Lee L S. Perfluorooctane Sulfonate (PFOS) Removal with Pd0/nFe0 Nanoparticles:Adsorption or Aqueous Fe-Complexation, Not Transformation?[J]. Journal of Hazardous Materials, 2018, 342:20-28.
[17] Zaggia A, Conte L, Falletti L, et al. Use of Strong Anion Exchange Resins for the Removal of Perfluoroalkylated Substances from Contaminated Drinking Water in Batch and Continuous Pilot Plants[J]. Water Research, 2016, 91:137-146.
[18] Deng S, Yu Q, Huang J, et al. Removal of Perfluorooctane Sulfonate from Wastewater by Anion Exchange Resins:Effects of Resin Properties and Solution Chemistry[J]. Water Research, 2010, 44(18):5188-5195.
[19] Li J, Li Q, Li L, et al. Removal of Perfluorooctanoic Acid from Water with Economical Mesoporous Melamine-Formaldehyde Resin Microsphere[J]. Chemical Engineering Journal, 2017, 320:501-509.
[20] Wang F, Shih K. Adsorption of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) on Alumina:Influence of Solution pH and Cations[J]. Water Research, 2011, 45(9):2925-2930.
[21] Johnson R L, Anschutz A J, Smolen J M, et al. The Adsorption of Perfluorooctane Sulfonate onto Sand, Clay, and Iron Oxide Surfaces[J]. Journal of Chemical & Engineering Data, 2007, 52(4):1165-1170.
[22] Zhang D, He Q, Wang M,et al. Sorption of Perfluoroalkylated Substances (PFASs) onto Granular Activated Carbon and Biochar[J]. Environmental Technology, 2019, doi:10.1080/09593330.2019.1680744.
[23] Liu Y, David W B, Carol J P,et al. Removal of Pharmaceutical Compounds, Artificial Sweeteners, and Perfluoroalkyl Substances from Water Using a Passive Treatment System Containing Zero-Valent Iron and Biochar[J]. Science of the Total Environment, 2019, 691:165-177.
[24] Johansson L, Gustafsson J P. Phosphate Removal Using Blast Furnace Slags and Opoka-Mechanisms[J]. Water Research, 2000, 34(1):259-265.
[25] Yang J, Wang S, Lu Z, et al. Converter Slag-Coal Cinder Columns for the Removal of Phosphorous and Other Pollutants[J]. Journal of Hazardous Materials, 2009, 168(1):331-337.
[26] Tang W, Huang H, Gao Y, et al. Preparation of a Novel Porous Adsorption Material from Coal Slag and Its Adsorption Properties of Phenol from Aqueous Solution[J]. Materials & Design, 2015, 88:1191-1200.
[27] Yang X, Tang W, Liu X, et al. Synthesis of Mesoporous Silica from Coal Slag and CO2 for Phenol Removal[J]. Journal of Cleaner Production, 2019, 208:1255-1264.
[28] Tran H N, You S J, Hosseini-Bandegharaei A, et al. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions:A Critical Review[J]. Water Research, 2017, 120:88-116.
[29] 孙博,马军.离子交换树脂对水中全氟羧酸的吸附去除[J]. 水处理技术, 2017, 43(1):22-26. Sun Bo, Ma Jun. Adsorption and Removal of Perfluorocarboxylic Acid in Water by Ion Exchange Resin[J]. Water Treatment Technology, 2017, 43(1):22-26.
[30] 刘娜,张朋朋,丁隆真,等.氮掺杂碳材料活化过硫酸盐降解4-氯苯酚[J]. 吉林大学学报(地球科学版),2020,50(4):1173-1181. Liu Na, Zhang Pengpeng, Ding Longzhen, et al. Nitrogen-Doped Carbon Material Activate Persulfate to Degrade 4-Chlorophenol[J]. Journal of Jilin University (Earth Science Edition), 2020,50(4):1173-1181.
[31] Fagbayigbo B O, Opeolu B O, Fatoki O S, et al. Removal of PFOA and PFOS from Aqueous Solutions Using Activated Carbon Produced from Vitis Vinifera Leaf Litter[J]. Environmental Science & Pollution Research, 2017, 24(14):1-14.
[32] Chang P H, Jiang W T, Li Z. Removal of Perfluorooctanoic Acid from Water Using Calcined Hydrotalcite:A Mechanistic Study[J]. Journal of Hazardous Materials, 2019, 368:487-495.
[33] Xu C, Chen H, Jiang F. Adsorption of Perflourooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) on Polyaniline Nanotubes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 479:60-67.
[34] Li X, Pignatello J J, Wang Y, et al. New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes[J]. Environmental Science & Technology, 2013, 47(15):8334-8341.
[35] Zhou Y, He Z, Tao Y, et al. Preparation of a Functional Silica Membrane Coated on Fe3O4 Nanoparticle for Rapid and Selective Removal of Perfluorinated Compounds from Surface Water Sample[J]. Chemical Engineering Journal, 2016, 303:156-166.
[36] Shao Q, Xu C, Wang Y, et al. Dynamic Interactions Between Sulfidated Zerovalent Iron and Dissolved Oxygen:Mechanistic Insights for Enhanced Chromate Removal[J]. Water Research, 2018, 135:322-330.
[37] Inyang M, Dickenson E R V. The Use of Carbon Adsorbents for the Removal of Perfluoroalkyl Acids from Potable Reuse Systems[J]. Chemosphere, 2017, 184:168-175.
[1] 杨悦锁, 朱一丹, 张文卿, 武宇辉, Yu Tong, 张大志. 地下水系统中镍污染和天然胶体共迁移特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 226-233.
[2] 董军, 李文德, 陈建隆, 吴玥, 鹿豪杰. 电容去离子化去除地下水中镉的影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1129-1136.
[3] 何俊, 王小琦, 颜兴, 万娟, 朱志政. 溶液和温度作用下膨润土防水毯的渗透性能[J]. 吉林大学学报(地球科学版), 2019, 49(3): 807-816.
[4] 宋志伟, 李婷, 易宏云, 邱杰, 张迪, 陈丹凤. 好氧颗粒污泥对有机污染物的吸附机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 868-873.
[5] 刘娜, 杨亚冬, Alberto Bento Charrua, 王航, 叶康, 吕春欣. 响应曲面法优化生物质炭去除水溶液中的阿特拉津[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1199-1207.
[6] 王飞宇, 冯伟平, 关晶, 贺志勇. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报(地球科学版), 2016, 46(2): 388-397.
[7] 张凤君, 贾晗, 刘佳露, 董佳新, 卢伟, 吕聪. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1515-1522.
[8] Alkali Mohammed,杨悦锁,杜新强,杨明星,Abdullahi Musa. 内分泌干扰物的环境危害:雌激素及其硫酸盐在土壤中的吸附规律[J]. 吉林大学学报(地球科学版), 2013, 43(2): 573-0581.
[9] 张先富, 李卉, 洪梅, 宋博宇, 张福全, 梁爽. 苏打盐碱土对氮转化的影响[J]. J4, 2012, 42(4): 1145-1150.
[10] 邹东雷, 唐抒圆, 熊厚峰, 唐绍福, 李春华, 陈鹏. β-环糊精交联聚合物对氯苯的吸附特性[J]. J4, 2012, 42(4): 1166-1172.
[11] 郭平, 宋杨, 谢忠雷, 张迎新, 李悦铭, 张赛. 冻融作用对黑土和棕壤中Pb、Cd吸附/解吸特征的影响[J]. J4, 2012, 42(1): 226-232.
[12] 黄冠星, 王莹, 刘景涛, 张玉玺, 张英. 污灌土壤对铅的吸附和解吸特性[J]. J4, 2012, 42(1): 220-225.
[13] 张兰英, 张蕾, 岳建伟, 刘娜, 孙恒战. 吗啉废水的生化处理工艺[J]. J4, 2011, 41(2): 536-540.
[14] 李鱼, 李娟, 高茜, 王岙. 共存镉/铜对沉积物(生物膜)中主要组分吸附阿特拉津的影响[J]. J4, 2010, 40(6): 1435-1440.
[15] 杨殿范, 魏存弟, 宁维坤, 徐少南, 蒋引珊. 嫩江蛋白石页岩的结构及其吸附性能[J]. J4, 2010, 40(5): 1061-1065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .