吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1853-1862.doi: 10.13278/j.cnki.jjuese.20200053
刘娜1,2, 王金鑫1,2, 焦昕倩1,2, 雒峰3,4
Liu Na1,2, Wang Jinxin1,2, Jiao Xinqian1,2, Luo Feng3,4
摘要: 为高效快速去除水中全氟辛酸,选择工业废物煤化工渣对全氟辛酸进行吸附去除探究。采用不同的处理方法制备了4种煤化工渣(粒径从大到小为CGA1、CGA2、CGA3和CGA4),研究其在水溶液中的全氟辛酸吸附性能。利用扫描电子显微镜(SEM)、拉曼光谱、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对4种煤化工渣的结构特征进行表征分析,并考察了全氟辛酸初始质量浓度和初始pH对吸附进程的影响。实验结果表明:煤化工渣对全氟辛酸有高效的吸附能力,伪二级动力学模型和Langmuir等温模型可以较好地描述4种煤化工渣对全氟辛酸的吸附行为及过程,其中CGA4去除全氟辛酸的最大吸附量为25.51 mg/g;随着全氟辛酸溶液初始质量浓度升高,煤化工渣对全氟辛酸的吸附容量逐渐增加;初始pH对CGA3和CGA4的影响微弱,CGA1和CGA2在酸性条件下显示出更优越的吸附性能。由此得出,4种煤化工材料中粒径最小的CGA4具有最优的全氟辛酸去除能力且基本不受pH限制。FTIR分析表明,吸附过程中氢键的形成占主导地位,XPS和Zeta电位检测结果表明,物理吸附和静电吸附在去除过程中也发挥了重要作用。
中图分类号:
[1] Qian J, Shen M, Wang P, et al. Perfluorooctane Sulfonate Adsorption on Powder Activated Carbon:Effect of Phosphate (P) Competition, pH, and Temperature[J]. Chemosphere, 2017, 182:215-222. [2] Santos A, Rodríguez S, Pardo F, et al. Use of Fenton Reagent Combined with Humic Acids for the Removal of PFOA from Contaminated Water[J]. Science of the Total Environment, 2016, 563:657-663. [3] Zhang D, Luo Q, Gao B, et al. Sorption of Perfluorooctanoic Acid, Perfluorooctane Sulfonate and Perfluoroheptanoic Acid on Granular Activated Carbon[J]. Chemosphere, 2016, 144:2336-2342. [4] Maimaiti A, Deng S, Meng P, et al. Competitive Adsorption of Perfluoroalkyl Substances on Anion Exchange Resins in Simulated Afff-Impacted Groundwater[J]. Chemical Engineering Journal, 2018, 348:494-502. [5] Appleman T D, Dickenson E R V, Bellona C, et al. Nanofiltration and Granular Activated Carbon Treatment of Perfluoroalkyl Acids[J]. Journal of Hazardous Materials, 2013, 260:740-746. [6] Du Z, Deng S, Bei Y, et al. Adsorption Behavior and Mechanism of Perfluorinated Compounds on Various Adsorbents:A Review[J]. Journal of Hazardous Materials, 2014, 274:443-454. [7] Zhi Y, Liu J. Surface Modification of Activated Carbon for Enhanced Adsorption of Perfluoroalkyl Acids from Aqueous Solutions[J]. Chemosphere, 2016, 144:1224-1232. [8] Ochoa-Herrera V, Sierra-Alvarez R. Removal of Perfluorinated Surfactants by Sorption onto Granular Activated Carbon, Zeolite and Sludge[J]. Chemosphere, 2008, 72(10):1588-1593. [9] Yang B, Han Y, Yu G, et al. Efficient Removal of Perfluoroalkyl Acids (PFAAS) from Aqueous Solution by Electrocoagulation Using Iron Electrode[J]. Chemical Engineering Journal, 2016, 303:384-390. [10] Guo H, Liu Y, Ma W, et al. Surface Molecular Imprinting on Carbon Microspheres for Fast and Selective Adsorption of Perfluorooctane Sulfonate[J]. Journal of Hazardous Materials, 2018, 348:29-38. [11] Hisao H, Ari Y, Etsuko H, et al. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant[J]. Environmental Science & Technology, 2005, 39(7):2383-2388. [12] Xue A, Yuan Z W, Sun Y, et al. Electro-Oxidation of Perfluorooctanoic Acid by Carbon Nanotube Sponge Anode and the Mechanism[J]. Chemosphere, 2015, 141:120-126. [13] Kucharzyk K H, Darlington R, Benotti M, et al. Novel Treatment Technologies for Pfas Compounds:A Critical Review[J]. Journal of Environmental Management, 2017, 204:757-764. [14] Liu J, Li C, Qu R, et al. Kinetics and Mechanism Insights into the Photodegradation of Hydroperfluorocarboxylic Acids in Aqueous Solution[J]. Chemical Engineering Journal, 2018, 348:644-652. [15] Tang H, Xiang Q, Lei M, et al. Efficient Degradation of Perfluorooctanoic Acid by Uv-Fenton Process[J]. Chemical Engineering Journal, 2012, 184:156-162. [16] Park S, Zenobio J E, Lee L S. Perfluorooctane Sulfonate (PFOS) Removal with Pd0/nFe0 Nanoparticles:Adsorption or Aqueous Fe-Complexation, Not Transformation?[J]. Journal of Hazardous Materials, 2018, 342:20-28. [17] Zaggia A, Conte L, Falletti L, et al. Use of Strong Anion Exchange Resins for the Removal of Perfluoroalkylated Substances from Contaminated Drinking Water in Batch and Continuous Pilot Plants[J]. Water Research, 2016, 91:137-146. [18] Deng S, Yu Q, Huang J, et al. Removal of Perfluorooctane Sulfonate from Wastewater by Anion Exchange Resins:Effects of Resin Properties and Solution Chemistry[J]. Water Research, 2010, 44(18):5188-5195. [19] Li J, Li Q, Li L, et al. Removal of Perfluorooctanoic Acid from Water with Economical Mesoporous Melamine-Formaldehyde Resin Microsphere[J]. Chemical Engineering Journal, 2017, 320:501-509. [20] Wang F, Shih K. Adsorption of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) on Alumina:Influence of Solution pH and Cations[J]. Water Research, 2011, 45(9):2925-2930. [21] Johnson R L, Anschutz A J, Smolen J M, et al. The Adsorption of Perfluorooctane Sulfonate onto Sand, Clay, and Iron Oxide Surfaces[J]. Journal of Chemical & Engineering Data, 2007, 52(4):1165-1170. [22] Zhang D, He Q, Wang M,et al. Sorption of Perfluoroalkylated Substances (PFASs) onto Granular Activated Carbon and Biochar[J]. Environmental Technology, 2019, doi:10.1080/09593330.2019.1680744. [23] Liu Y, David W B, Carol J P,et al. Removal of Pharmaceutical Compounds, Artificial Sweeteners, and Perfluoroalkyl Substances from Water Using a Passive Treatment System Containing Zero-Valent Iron and Biochar[J]. Science of the Total Environment, 2019, 691:165-177. [24] Johansson L, Gustafsson J P. Phosphate Removal Using Blast Furnace Slags and Opoka-Mechanisms[J]. Water Research, 2000, 34(1):259-265. [25] Yang J, Wang S, Lu Z, et al. Converter Slag-Coal Cinder Columns for the Removal of Phosphorous and Other Pollutants[J]. Journal of Hazardous Materials, 2009, 168(1):331-337. [26] Tang W, Huang H, Gao Y, et al. Preparation of a Novel Porous Adsorption Material from Coal Slag and Its Adsorption Properties of Phenol from Aqueous Solution[J]. Materials & Design, 2015, 88:1191-1200. [27] Yang X, Tang W, Liu X, et al. Synthesis of Mesoporous Silica from Coal Slag and CO2 for Phenol Removal[J]. Journal of Cleaner Production, 2019, 208:1255-1264. [28] Tran H N, You S J, Hosseini-Bandegharaei A, et al. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions:A Critical Review[J]. Water Research, 2017, 120:88-116. [29] 孙博,马军.离子交换树脂对水中全氟羧酸的吸附去除[J]. 水处理技术, 2017, 43(1):22-26. Sun Bo, Ma Jun. Adsorption and Removal of Perfluorocarboxylic Acid in Water by Ion Exchange Resin[J]. Water Treatment Technology, 2017, 43(1):22-26. [30] 刘娜,张朋朋,丁隆真,等.氮掺杂碳材料活化过硫酸盐降解4-氯苯酚[J]. 吉林大学学报(地球科学版),2020,50(4):1173-1181. Liu Na, Zhang Pengpeng, Ding Longzhen, et al. Nitrogen-Doped Carbon Material Activate Persulfate to Degrade 4-Chlorophenol[J]. Journal of Jilin University (Earth Science Edition), 2020,50(4):1173-1181. [31] Fagbayigbo B O, Opeolu B O, Fatoki O S, et al. Removal of PFOA and PFOS from Aqueous Solutions Using Activated Carbon Produced from Vitis Vinifera Leaf Litter[J]. Environmental Science & Pollution Research, 2017, 24(14):1-14. [32] Chang P H, Jiang W T, Li Z. Removal of Perfluorooctanoic Acid from Water Using Calcined Hydrotalcite:A Mechanistic Study[J]. Journal of Hazardous Materials, 2019, 368:487-495. [33] Xu C, Chen H, Jiang F. Adsorption of Perflourooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) on Polyaniline Nanotubes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 479:60-67. [34] Li X, Pignatello J J, Wang Y, et al. New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes[J]. Environmental Science & Technology, 2013, 47(15):8334-8341. [35] Zhou Y, He Z, Tao Y, et al. Preparation of a Functional Silica Membrane Coated on Fe3O4 Nanoparticle for Rapid and Selective Removal of Perfluorinated Compounds from Surface Water Sample[J]. Chemical Engineering Journal, 2016, 303:156-166. [36] Shao Q, Xu C, Wang Y, et al. Dynamic Interactions Between Sulfidated Zerovalent Iron and Dissolved Oxygen:Mechanistic Insights for Enhanced Chromate Removal[J]. Water Research, 2018, 135:322-330. [37] Inyang M, Dickenson E R V. The Use of Carbon Adsorbents for the Removal of Perfluoroalkyl Acids from Potable Reuse Systems[J]. Chemosphere, 2017, 184:168-175. |
[1] | 杨悦锁, 朱一丹, 张文卿, 武宇辉, Yu Tong, 张大志. 地下水系统中镍污染和天然胶体共迁移特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 226-233. |
[2] | 董军, 李文德, 陈建隆, 吴玥, 鹿豪杰. 电容去离子化去除地下水中镉的影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1129-1136. |
[3] | 何俊, 王小琦, 颜兴, 万娟, 朱志政. 溶液和温度作用下膨润土防水毯的渗透性能[J]. 吉林大学学报(地球科学版), 2019, 49(3): 807-816. |
[4] | 宋志伟, 李婷, 易宏云, 邱杰, 张迪, 陈丹凤. 好氧颗粒污泥对有机污染物的吸附机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 868-873. |
[5] | 刘娜, 杨亚冬, Alberto Bento Charrua, 王航, 叶康, 吕春欣. 响应曲面法优化生物质炭去除水溶液中的阿特拉津[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1199-1207. |
[6] | 王飞宇, 冯伟平, 关晶, 贺志勇. 湖相致密油资源地球化学评价技术和应用[J]. 吉林大学学报(地球科学版), 2016, 46(2): 388-397. |
[7] | 张凤君, 贾晗, 刘佳露, 董佳新, 卢伟, 吕聪. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1515-1522. |
[8] | Alkali Mohammed,杨悦锁,杜新强,杨明星,Abdullahi Musa. 内分泌干扰物的环境危害:雌激素及其硫酸盐在土壤中的吸附规律[J]. 吉林大学学报(地球科学版), 2013, 43(2): 573-0581. |
[9] | 张先富, 李卉, 洪梅, 宋博宇, 张福全, 梁爽. 苏打盐碱土对氮转化的影响[J]. J4, 2012, 42(4): 1145-1150. |
[10] | 邹东雷, 唐抒圆, 熊厚峰, 唐绍福, 李春华, 陈鹏. β-环糊精交联聚合物对氯苯的吸附特性[J]. J4, 2012, 42(4): 1166-1172. |
[11] | 郭平, 宋杨, 谢忠雷, 张迎新, 李悦铭, 张赛. 冻融作用对黑土和棕壤中Pb、Cd吸附/解吸特征的影响[J]. J4, 2012, 42(1): 226-232. |
[12] | 黄冠星, 王莹, 刘景涛, 张玉玺, 张英. 污灌土壤对铅的吸附和解吸特性[J]. J4, 2012, 42(1): 220-225. |
[13] | 张兰英, 张蕾, 岳建伟, 刘娜, 孙恒战. 吗啉废水的生化处理工艺[J]. J4, 2011, 41(2): 536-540. |
[14] | 李鱼, 李娟, 高茜, 王岙. 共存镉/铜对沉积物(生物膜)中主要组分吸附阿特拉津的影响[J]. J4, 2010, 40(6): 1435-1440. |
[15] | 杨殿范, 魏存弟, 宁维坤, 徐少南, 蒋引珊. 嫩江蛋白石页岩的结构及其吸附性能[J]. J4, 2010, 40(5): 1061-1065. |
|