吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (2): 647-654.doi: doi:10.13278/j.cnki. jjuese.20230084

• 地球探测与信息技术 • 上一篇    下一篇

基于同步提取变换的地空频率域电磁信号幅度提取方法

陈亮1, 张田玉1, 王言章2,3,4, 周海根2,3,4, 蒋川东2,3,4   

  1. 1.中交一公局巴州交通建设有限公司,新疆库尔勒841000

    2.国家地球物理探测仪器工程技术研究中心(吉林大学),长春130026

    3.地球信息探测仪器教育部重点实验室(吉林大学),长春130026

    4.吉林大学仪器科学与电气工程学院,长春130026

  • 出版日期:2024-03-26 发布日期:2024-04-10
  • 基金资助:

    国家自然科学基金项目(42004059);国家重点研发计划项目(2017YFC0601802)


Amplitude Extraction of Ground-Airborne Frequency-Domain Electromagnetic Signals Based on Synchroextracting Transform

Chen Liang1, Zhang Tianyu1, Wang Yanzhang2,3,4, Zhou Haigen2,3,4, Jiang Chuandong2,3,4

#br#   

  1. 1. Bayingolin Transportation Construction of CCCC First Highway Engineering Group Co., Ltd., Korla 841000, Xinjiang, China

    2. National Geophysical Exploration Equipment Engineering Research Center (Jilin University), Changchun 130026, China

    3. Key Laboratory of Geophysical Exploration Equipment (Jilin University), Ministry of Education, Changchun 130026, China

    4. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130026, China

  • Online:2024-03-26 Published:2024-04-10
  • Supported by:
    Supported by the National Natural Science Foundation of China (42004059) and the National Key Research and Development  Program of China (2017YFC0601802)

摘要: 地空频率域电磁法探测信号为多频非平稳信号,为了解决应用传统傅里叶变换方法提取其幅度时分辨率较差的问题,本文提出了基于同步提取变换(SET)的地空频域电磁信号幅度提取方法。该方法对电磁数据进行SET,得到高分辨率时频图,并利用能量算子使电磁数据时频谱能量更为集中;采用贪心算法提取脊线,得到时频图的高能量带;通过自回归模型自适应地补充了脊线中的0值,解决了由窗函数引起的端点效应问题。根据脊线位置的时频图复数值,得到各频率分量幅度随时间的变化,研究了不同信噪比情况下基于SET的地空频率域电磁信号幅度提取结果的准确性。结果表明:当信噪比≥10 dB时,幅度提取结果的平均相对均方根误差均小于5%;当信噪比<10 dB时,幅度提取结果的平均相对均方根误差在10%以内。提取效果良好。将此方法应用于新疆霍拉山隧道工程地空频率域电磁法探测中,成功提取了多频电磁信号各频率分量的幅度,与采用傅里叶变换提取非平稳信号幅度的方法相比,该方法有效地提高了幅度提取结果的分辨率。

关键词: 地空频率域电磁法, 时频分析, 非平稳信号, 参数估计, 同步提取变换

Abstract: The detection signal of the ground-airborne frequency-domain electromagnetic method (GAFDEM) is multi-frequency non-stationary signal, when extracting its amplitude using conventional Fourier transform methods, the resolution is poor. To solve the above problem, this paper proposes an amplitude extraction  method of ground-airborne  frequency-domain electromagnetic  signal  based on synchroextracting transform (SET). This method  performs SET on the electromagnetic data to obtain high-resolution time-frequency graph, and uses energy operator to make the energy of time-frequency spectral electromagnetic data more concentrated. At the same time, the greedy algorithm is used to realize the ridge extraction method to obtain the high energy band of the time-frequency graph. By filling in zero values in the ridges adaptively through autoregressive model, the endpoint effect problem caused by the window function is solved.  according to the complex value of the time-frequency-diagram at the ridge location, the variation of the amplitude of each frequency component with time is obtained, and the accuracy of the amplitude extraction of electromagnetic signals in the ground-airborne frequency-domain based on SET is investigated under different signal-to-noise ratios. Through calculation, when the signal-to-noise ratio  is greater than or equal to 10 dB, the average relative root mean square error  of the amplitude extraction result is less than 5%; When the signal-to-noise ratio  is less than 10 dB, the average relative root mean square error of the amplitude extraction result is less than 10%, achieving good extraction results. This method is applied to the GAFDEM delection  of the Huola Mountain tunnel project in Xinjiang, and the amplitude of each frequency component of the multi-frequency electromagnetic signal is successfully extracted. Compared with the method of extracting non-stationary signal amplitude using the Fourier transform, this method effectively improves the resolution of amplitude extraction results.

Key words: ground-airborne frequency-domain electromagnetic method, time-frequency analysis, nonstationary signal, parameter estimation, synchroextracting transform

中图分类号: 

  • P319.3
[1] 康学远, 施小清, 史良胜, 吴吉春. 基于集合卡尔曼滤波的多相流模型参数估计——以室内二维砂箱中重质非水相污染物入渗为例[J]. 吉林大学学报(地球科学版), 2017, 47(3): 848-859.
[2] 刘洋, 李炳秀, 刘财, 陈常乐, 杨学亭. 局部时频变换域地震波吸收衰减补偿方法[J]. 吉林大学学报(地球科学版), 2016, 46(2): 594-602.
[3] 乐友喜,黄健良,张阳,周磊,张玉明,陈孔全. 地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 632-640.
[4] 王祝文, 王晓丽, 刘菁华, 张雪昂, 向旻, 杨闯. 裂缝性地层声波测井的联合时频特征[J]. J4, 2012, 42(4): 914-920.
[5] 马见青, 李庆春. 面波压制的TT变换法[J]. J4, 2011, 41(2): 565-571.
[6] 陈学华,贺振华,黄德济. 时频域高分辨地震层序识别[J]. J4, 2008, 38(1): 152-0155.
[7] 王祝文, 刘菁华, 聂春燕. 时频分析的重排方法及其在声波测井信号处理中的应用[J]. J4, 2007, 37(5): 1042-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .