受限观测场地,非常规观测系统,电阻率层析成像 ," /> 受限观测场地,非常规观测系统,电阻率层析成像 ,"/> restricted observation sites, unconventional observation system, electrical resistivity tomography ,"/> <span class="cf0">受限观测场地三维电阻率层析成像</span>

吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (4): 1309-1320.doi: 10.13278/j.cnki.jjuese.20240113

• 地球探测与信息技术 • 上一篇    下一篇

受限观测场地三维电阻率层析成像

柳杰1,刘海飞2,李星3,赵莹杰2,张宇豪2,李小强2,柳建新2

Liu Jie1, Liu Haifei2, Li Xing3, Zhao Yingjie2, Zhang Yuhao2, Li Xiaoqiang2, Liu Ji   

  1. 1. 广州市市政工程设计研究总院有限公司,广州 510000

    2. 中南大学地球科学与信息物理学院,长沙 410083

    3. 安徽省交通规划设计研究总院股份有限公司,合肥 230088

  • 收稿日期:2024-05-22 出版日期:2025-07-26 发布日期:2025-08-05
  • 通讯作者: 刘海飞(1975—),男,副教授,博士,主要从事电磁法数值模拟与反演成像研究,E-mail:liuhaifei@126.com
  • 作者简介:柳杰(1992—),男,工程师,主要从事工程地球物理勘探方法技术研究,E-mail:522674539@qq.com
  • 基金资助:

    国家自然科学基金项目 (41774149)

3D Electrical Resistivity Tomography for Restricted Observation Sites

Liu Jie1, Liu Haifei2, Li Xing3, Zhao Yingjie2, Zhang Yuhao2, Li Xiaoqiang2, Liu Jianxin2   

  1. 1. Guangzhou Municipal Engineering Design & Research Institute Co., Ltd., Guangzhou 510000, China

    2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

    3. Anhui Transport Consulting & Design Institute Co., Ltd., Hefei 230088, China

  • Received:2024-05-22 Online:2025-07-26 Published:2025-08-05
  • Supported by:

    the National Natural Science Foundation of China (41774149)

摘要:

由于观测场地障碍物的影响或探测对象的特殊性,当电阻率层析成像法无法按直线布设测线,甚至电极阵列也不能布设于目标体上方时,这种场地条件导致方法应用受限。本文研究了受限观测场地的三维电阻率层析成像技术。首先设计了三种受限观测场地的电极阵列观测系统:“□”形观测系统、“U”形观测系统和“L”形观测系统;然后研究了任意类型观测系统的电阻率三维反演成像方法;最后通过模型试验对比分析了不同观测系统的探测效果,并将“□”形观测系统应用于探测浙江某古塔的塔基结构。从地电模型和实际场地的探测效果来看,这三种特殊观测系统的三维电阻率层析成像技术均能获得受限观测场地下方的三维电性特征,为目标异常分析提供有利的参考依据。其中,“□”形观测系统的探测效果最优,“U”形观测系统次之,“L”形观测系统较弱。在实际应用中,需结合场地条件和勘探目标,合理选择电极阵列布设形态和电极数目,以优化探测效果。

关键词: 受限观测场地')">

受限观测场地, 非常规观测系统, 电阻率层析成像

Abstract:

Due to the presence of obstacles in the observation site or the unique characteristics of the target object, it is not always possible to lay out survey lines for electrical resistivity tomography in a straight manner. In some cases, even the electrode array cannot be placed directly above the target body. As a result, there are limitations on the application of resistivity tomography method under certain site conditions. This paper focuses on studying 3D electrical resistivity tomography technology for restricted observation sites. The study begins by designing three electrode array observation systems specifically tailored for restricted observation sites: “□” shaped observation system, “U” shaped observation system, and “L” shaped observation system. Subsequently, we investigate the 3D inversion imaging method for determining resistivity using any type of observation system. Finally, we analyze the detection effectiveness of different observation systems through model testing and apply “□” shaped observation system to detect the base structure of an ancient tower in Zhejiang Province. Based on both geoelectric model detection results and the actual site conditions, all three special observation systems for 3D electrical resistivity tomography can effectively capture 3D electrical characteristics below the restricted observation site, thereby providing valuable references for analyzing anomalies within the target area. Among them, the “□” shaped observation system demonstrates the best imaging performance, followed by the “U” shaped observation system, while the “L” shaped observation system shows relatively weak performance. In practical applications, it is essential to consider site conditions and exploration objectives when selecting the electrode array geometry and the number of electrodes, in order to optimize the imaging results.

Key words: restricted observation sites')">

restricted observation sites, unconventional observation system, electrical resistivity tomography

中图分类号: 

  • P319.3
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .