吉林大学学报(地球科学版)

• 地质与资源 • 上一篇    下一篇

闽中裂谷带梅仙铅锌矿区花岗斑岩的LA-ICP-MS锆石U-Pb年龄、成因及成矿效应

孙洪涛1, 2,王秋玲1,2,雷如雄3,陈世忠4,陈刚4,吴昌志1   

  1. 1.南京大学地球科学与工程学院,南京210093;
    2.江苏省有色金属华东地质勘查局,南京210007;
    3.长安大学地球科学与资源学院,西安710054;
    4.中国地质调查局南京地质调查中心,南京210016
  • 收稿日期:2013-08-21 出版日期:2014-03-26 发布日期:2014-03-26
  • 作者简介:孙洪涛(1974-),男,工程师,主要从事矿床学方面研究,E-mail:sun197405@sina.cn
  • 基金资助:

    国家自然科学基金项目(41272098)

LA-ICP-MS Zircon U-Pb Age, Petrogenesis and Metallogenic Effect for Porphyry Granites from the Meixian Pb-Zn Deposit in the Central Fujian Rift, Southeast China

Sun Hongtao1,2,Wang Qiuling1,2, Lei Ruxiong3, Chen Shizhong4, Chen Gang4, Wu Changzhi1   

  1. 1.School of Earth Sciences and Engineering, Nanjing University, Nanjing210093, China;
    2.East China Mineral Exploration and Development Bureau,Nanjing210007, China;
    3.School of Earth Science & Resources, Chang’an University, Xi’an710054, China;
    4.Nanjing Institute of Geology and Mineral Resources, China Geological Survey, Nanjing210016, China
  • Received:2013-08-21 Online:2014-03-26 Published:2014-03-26

摘要:

福建梅仙铅锌(银)矿床位于闽中裂谷带,是一大型多金属VMS型块状硫化物矿床。在详细野外地质考察基础上,通过对梅仙铅锌(银)矿区花岗斑岩2个样品的LA-ICP-MS锆石U-Pb年代学研究,确定其为燕山期花岗斑岩((148.9±1.4)Ma,(152.0±2.1) Ma)。全岩地球化学分析结果表明:所研究花岗斑岩具有高硅、富钾、中等含量的铝和全碱以及弱过铝质等特征。其稀土元素配分曲线普遍向右缓倾,且重稀土元素分配曲线比较平坦,富集大离子亲石元素和高强场元素,不具明显的Nb、Ta亏损,是产于碰撞后构造背景之下的高钾钙碱性I型花岗岩,其母岩浆形成后发生了角闪石、黑云母和斜长石等矿物高程度的结晶分异作用。梅仙矿区花岗斑岩在空间上与铅锌硫化物矿体和赋矿层位关系密切,岩浆富含挥发分和大离子亲石元素,分异程度高,表明该燕山中期岩浆活动有利于矿区矽卡岩化成矿作用,并可对早期层控块状硫化物矿体进行强烈的叠加改造。

关键词: 锆石U-Pb年代学, 地球化学, 燕山期花岗斑岩, 梅仙铅锌矿, 成矿效应

Abstract:

Located in the Central Fujian Rift, the Meixian Pb-Zn deposit is a large volcanogenic massive sulfide Pb-Zn (-Ag) deposit. Based on a detailed field study, the authors identify Yanshanian porphyry granite (148.9±1.4 Ma, 152.0±2.1 Ma) in the Meixian deposit by LA-ICP-MS zircon U-Pb dating. Geochemical analyses show the porphyry granites have high SiO2 and potassium abundances, moderate Al2O3, alkaline contents, and weak peraluminous. Chondrite-normalized REE distribution pattern display right skewed shapes showing fractionation between LREE and HREE with flat HREE pattern. These granites are enriched in large ion lithophile elements (LILEs) and high field strength elements(HFSEs) without obvious depletion in Nb-Ta, indicating that they were high-potassium calc-alkaline I-type granite formed in post-collision environment. Their parental magma were experienced strongly fractional crystallization of amphibole, biotite, plagioclase and some other accessory minerals. These porphyry granites are spatially associated with lead-zinc bodies, their magma are enriched in volatile component, large ion lithophile elements and have underwent high degree differentiation by fractional crystallization, indicating the Later Jurassic magmatism in the study area is very favorable for the skarn mineralization and extensively superimposed and reformed the earlier stage massive sulfur lead-zinc ore bodies.

Key words: zircon U-Pb dating, geochemistry, Yanshanian porphyry granite, Meixian Pb-Zn deposit, metallogenic effect

中图分类号: 

  • P618.51
[1] 王 硕, 孙丰月, 王 冠, 刘 凯, 刘云华. 黑龙江省四平山金矿床成矿作用及矿床成因:来自矿床地质、地球化学、锆石U-Pb年代学及H-O-S同位素的制约[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1626-1648.
[2] 王琳琳, 霍 亮, 王 莹 . 吉林延边小西南岔铜(金)矿床早白垩世中—酸性岩浆岩年代学、地球化学及其成因探讨[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1658-1674.
[3] 李梦玲, 孙珍军, 于赫楠, 付 浩, 胡 涛. 秦皇岛茹各庄火山碎屑岩地球化学、锆石U-Pb定年、Hf同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1688-1706.
[4] 丁清峰, 吴睿哲, 张强, 周轩. 青海东昆仑洪水河铁矿床新元古代含铁建造铁同位素特征及其成因意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1497-1511.
[5] 赵拓飞, 林博磊, 陈昌昕, 王超, 李良.

青海东昆仑西段阿克楚克赛地区新元古代片麻状黑云二长花岗岩成因及其地质意义:地球化学、年代学及Hf同位素制约 [J]. 吉林大学学报(地球科学版), 2022, 52(5): 1540-1557.

[6] 张宇婷, 孙丰月, 李予晋, 叶丽娜, 刘金龙, 苏 蓉. 吉南中侏罗世花岗闪长岩的锆石U-Pb年龄、地球化学及Hf同位素组成[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1675-1687.
[7] 钟佳, 王岩泉, . 琼东南盆地松南低凸起花岗岩年代学、地球化学特征及构造环境[J]. 吉林大学学报(地球科学版), 2022, 52(1): 134-.
[8] 殷 越1, 2, 贾鹏飞3, 黄志龙2, 吴红烛4, 金 希4, 刘国杰4. 三塘湖盆地马东地区卡拉岗组烃源岩特征与致密油意义[J]. 吉林大学学报(地球科学版), 2022, 52(1): 26-.
[9] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[10] 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752.
[11] 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852.
[12] 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972.
[13] 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053.
[14] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081.
[15] 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[2] 潘殿琦,张祖培,潘殿彩,陈义民,徐 瑞. 人工冻土纵波波速与温度和含水率的关系[J]. J4, 2006, 36(04): 588 -591 .
[3] 付 哲,周云轩,刘殿伟,刘万崧. 基于特征的面向对象虚拟GIS数据模型设计与原型系统实现[J]. J4, 2006, 36(04): 647 -652 .
[4] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[5] 周丽萍, 申向东, 李学斌, 白忠强. 天然浮石粉水泥土力学性质的试验研究[J]. J4, 2009, 39(3): 492 -497 .
[6] 黄玉龙, 王璞珺, 邵锐. 火山碎屑岩的储层物性--以松辽盆地营城组为例[J]. J4, 2010, 40(2): 227 -236 .
[7] 赵玉岩,郝立波,张志立,陆继龙,孙广瑞. 金属矿床勘查找矿信息系统的设计与实现[J]. J4, 2008, 38(1): 161 -0166 .
[8] 王祝文,刘菁华,聂春燕. 阵列声波测井信号的时频局域相关能量分析[J]. J4, 2008, 38(2): 341 -0346 .
[9] 卢焱,李健,白雪山,李永占. 地面磁法在隐伏铁矿勘查中的应用--以河北滦平Ⅱ号铁矿为例[J]. J4, 2008, 38(4): 698 -0702 .
[10] 王羽, 许强, 柴贺军, 唐胜传, 冯五一. 基于改进Shannon伪近邻法研究易滑地层位移变形时序[J]. J4, 2011, 41(1): 177 -181 .