吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1838-1852.doi: 10.13278/j.cnki.jjuese.20200064

• 地质工程与环境工程 • 上一篇    下一篇

深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例

张七道1,2, 刘振南1, 尹林虎1   

  1. 1. 中国地质调查局昆明自然资源综合调查中心, 昆明 650111;
    2. 中国地质大学(武汉)资源学院, 武汉 430074
  • 收稿日期:2020-05-06 出版日期:2021-11-26 发布日期:2021-11-24
  • 作者简介:张七道(1986-),男,工程师,主要从事地热学方面的研究,E-mail:506676421@qq.com
  • 基金资助:
    中国地质调查局项目(DD2016008120)

Chemical Characteristics and Genesis of Geothermal Fluid in Deep Metamorphic Rock Area: A Case of Hot Springs in Longchuan Basin, Western Yunnan

Zhang Qidao1,2, Liu Zhennan1, Yin Linhu1   

  1. 1. Kunming Comprehensive Natural Resources Survey Center, China Geological Survey, Kunming 650111, China;
    2. School of Earth Resources, China University of Geosciences, Wuhan 430074, China
  • Received:2020-05-06 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the Project of China Geological Survey (DD2016008120)

摘要: 为了对深变质岩区地热流体的成因和演化进行深入研究,在滇西陇川盆地开展了地质、放射性测量、磁法测量、水文地质和水文地球化学等调查工作,深入分析了盆地内尺巴处温泉的水文地球化学及同位素特征。结果表明:温泉水化学类型为HCO3·SO4·CO3-Na型,温泉中Li+质量浓度为0.220 mg/L,达到了锂矿泉水的命名标准,F-质量浓度为8.29 mg/L,可称为氟水,具医疗价值;温泉热水中冷水混入比例为0.72,热水补给高程为1 166.83 m,补给区温度为9.96℃,热储温度为191.71℃,循环深度为2 082.29 m,温泉天然放热量为9.49×1012 J/a;温泉水来源于大气降水,为深循环上升泉;地下水水化学组分的成因类型为岩石风化型,其主要组分来源于水岩相互作用;热源主要为深部未冷却的岩浆传导热及活动断裂产生的构造热,其次有少部分岩体中放射性同位素产生的放射热;深变质岩区温泉水中的pH值,SO42-、Cl-、Na+、SiO2质量浓度及总碱度高于冷水泉,Ca2+、Mg2+质量浓度低于冷水泉。

关键词: 水文地球化学, 尺巴处温泉, 陇川盆地, 滇西, 同位素, 地球物理

Abstract: In order to study the genesis and evolution of geothermal fluids in deep metamorphic rocks, the geological, radiometric, magnetic, hydrogeological, and hydrographic geochemistry surveys were carried out, the hydrographic and isotopic characteristics of Chibachu hot spring were thoroughly analyzed, and the cause of formation and characteristics of the hot spring were studied. The results show that:The hydrochemical type of the hot spring is HCO3·SO4·CO3-Na, the content of Li+ in the hot spring is 0.220 mg/L, which reaches the naming standard of lithium mineral water; The F- content is 8.29 mg/L, which can be called fluorine water with medical value. The cold water mixing ratio in the hot spring water is 0.72, the recharge elevation of the hot water is 1 166.83 m, the temperature of the recharge area is 9.96℃, the thermal storage temperature is 191.71℃, the circulation depth is 2 082.29 m, and the natural heat release of the hot spring is 9.49×1012 J/a. The hot spring water comes from the atmospheric precipitation and is a deep-cycle rising spring. The genesis type of the groundwater hydro-chemical component is rock weathering, and its main component comes from water-rock interaction. The heat source is mainly the conduction heat of the deep uncooled magma and the tectonic heat produced by the active faults, and followed by the radiant heat produced by radionuclides in a small part of the rock mass. The pH, SO42-, Cl-, Na+, SiO2 and total alkalinity content of hot springs in the deep metamorphic rock area are higher than that of cold springs,but Ca2+ and Mg2+ contents are lower than that of cold springs. Currently, the hot spring is used only for bathing, and needs to be further developed and utilized.

Key words: hydro-geochemistry, Chibachu hot spring, Longchuan basin, western Yunnan Province, isotope, geophysics

中图分类号: 

  • P641.3
[1] 廖忠礼,张予杰,陈文彬,等.地热资源的特点与可持续开发利用[J].中国矿业,2006,15(10):8-11. Liao Zhongli, Zhang Yujie, Chen Wenbin, et al. Available Persist Exploitation and Utilization of Geothermal Resources[J]. China Mining Magazine, 2006, 15(10):8-11.
[2] 闫强,于汶加,王安建,等.全球地热资源评述[J].可再生能源,2009,27(6):69-73. Yan Qiang, Yu Wenjia, Wang Anjian, et al. Review on the Global Geothermal Resources[J]. Renewable Energy Resources, 2009, 27(6):69-73.
[3] Barbier E. Geothermal Energy Technology and Current Status:An Overview[J]. General Information, 2002, 6(2):3-65.
[4] Bertani R. Geothermal Power Generation in the World 2005-2010 Date Report[J]. Geothermics, 2011, 41(1):1-29.
[5] 詹麒.国内外地热开发利用现状浅析[J].理论月刊,2009,25(7):73-77. Zhan Qi. Analysis on the Current Situation of Geothermall Development and Utilization Domestic and International[J]. Theory Monthly, 2009, 25(7):73-77.
[6] Fridleifsson I B. Geothermal Energy for the Benefit of the People[J]. Renewable and Sustainable Energy Reviews, 2001, 5(3):299-312.
[7] 刘经仁,范承均,杨志德,等.潞西幅1:20万区域地质报告[R]. 昆明:云南省地质局,1966. Liu Jingren, Fan Chengjun, Yang Zhide, et al. Regional Geological Report of Luxi 1:200000[R]. Kunming:Yunnan Provincial Geological Bureau, 1966.
[8] 梁乃英.云南温泉大观[M].昆明:云南人民出版社,2000. Liang Naiying. A Grand View of Yunnan Hot Springs[M]. Kunming:Yunnan People's Publishing House, 2000.
[9] 张彧齐,周训,刘海生,等.云南兰坪-思茅盆地红层中温泉和盐泉的水文地质特征[J].水文地质工程地质,2018,45(3):40-48. Zhang Yuqi, Zhou Xun, Liu Haisheng, et al. Hydrogeological Characteristics of the Hot Springs and Salty Springs Occurring in the Redbeds in the Lanping-Simao Basin of Yunnan[J]. Hydrogeology & Engineering Geology, 2018, 45(3):40-48.
[10] 杜毓超,吕勇,罗贵荣. 滇西潞西盆地温泉水文地球化学特征及其成因[J].地质通报,2012,31(2/3):406-412. Du Yuchao, Lü Yong, Luo Guirong. Hydrogeochemical Characteristics and Genetic Analysis of Hot Springs in Luxi Basin, Western Yunnan Province[J]. Geological Bulletin of China, 2012, 3l(2/3):406-412.
[11] 龙汨. 云南省腾冲县部分温泉的特征与成因[D].北京:中国地质大学(北京),2015. Long Mi. Characteristics and Genesis of Some Hot Springs in Tengchong County, Yunnan Province[D]. Beijing:China University of Geosciences(Beijing), 2015.
[12] 谭梦如,周训,张彧齐,等.云南勐海县勐阿街温泉水化学和同位素特征及成因[J].水文地质工程地质,2019,46(3):70-80. Tan Mengru, Zhou Xun, Zhang Yuqi, et al. Hydrochemical and Isotopic Characteristics and Formation of the Meng'ajie Hot Spring in Menghai County of Yunnan[J]. Hydrogeology & Engineering Geology, 2019, 46(3):70-80.
[13] 李永振,王作贵,姚瑞华,等.潞西幅1:20万区域水文地质普查报告[R].昆明:中国人民解放军00933部队,1979. Li Yongzhen, Wang Zuogui, Yao Ruihua, et al. Luxi 1:200000 Regional Hydrogeological Survey Report[R]. Kunming:Chinese People's Liberation Army 00933 Troops, 1979.
[14] 食品安全国家标准饮用天然矿泉水:GB 8537-2018[S].北京:中国标准出版社,2018. National Food Safety Standard for Drinking Natural Mineral Water:GB 8537-2018[S]. Beijing:China Standards Press, 2018.
[15] 生活饮用水卫生标准:GB 5749-2006[S].北京:中国标准出版社,2006. Standards for Drinking Water Quality:GB 5749-2006[S]. Beijing:China Standards Press, 2006.
[16] Giggenbach W F. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12):2749-2765.
[17] 吴红梅,孙占学.地热系统中矿物流体化学平衡的计算[J].华东地质学院学报,2000,23(1):39-42. Wu Hongmei, Sun Zhanxue. Calculation of the Fluid-Rock Equilibrium State in the Geothermal System[J]. Journal of East China Geological Institute, 2000, 23(1):39-42.
[18] 云南省地质矿产局地球物理地球化学勘查院.潞西幅1:20万水系沉积物测量报告[R].昆明:云南省地质矿产局, 1995. Geophysical and Geochemical Exploration Institute of Yunnan Bureau of Geology and Mineral Resources. Sediment Survey Report of 1:200000 Stream System in Luxi[R]. Kunming:Yunnan Bureau of Geology and Mineral Resources, 1995.
[19] 王蒙蒙.云南西北地区部分温泉和盐泉特征及钙华成因[D].北京:中国地质大学(北京),2017. Wang Mengmeng. Characteristics of Some Hot Springs and Salt Springs and Formation of Travertines in Northwestern Yunnan[D]. Beijing:China University of Geosciences(Beijing), 2017.
[20] 郑西来,刘鸿俊.地热温标中的水-岩平衡状态研究[J].西安地质学院学报, 1996, 18(1):74-79. Zheng Xilai, Liu Hongjun. Study of the Water-Rock Equilibrium State in the Application of Geothermometer[J]. Journal of Xi'an College of Geology, 1996, 18(1):74-79.
[21] Deutsch W J, Siegel R. Groundwater Geochemistry:Fundamentals and Applications to Contamination[M]. Los Angeles:CRC Press, 1997.
[22] Gibbs R J. Mechanisms Controlling World Water Chemistry[J]. Science, 1970, 170:1088-1090.
[23] 申豪勇,梁永平,赵春红,等.古堆泉岩溶地下水系统特征及系统圈划[J].吉林大学学报(地球科学版), 2020, 50(1):217-225. Shen Haoyong, Liang Yongping, Zhao Chunhong, et al. Hydro-Geological Characteristics and Demarcation of Gudui Spring Karst Groundwater System[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1):217-225.
[24] 王纯恒. 同位素水文地质概论[M].北京:地质出版社, 1991:6-118. Wang Chunheng. An Introduction to the Hydrogeology of Isotopes[M]. Beijing:Geological Publishing House, 1991:6-118.
[25] 周训,金晓媚,梁四海. 地下水科学专论[M]. 2版.北京:地质出版社,2017:29-123. Zhuo Xun, Jin Xiaomei, Liang Sihai. Special Topics on Groundwater Science[M]. 2nd ed. Beijing:Geological Publishing House, 2017:29-123.
[26] 郑淑慧,侯发高,倪葆龄. 我国大气降水的氢氧稳定同位素研究[J].科学通报, 1983, 28(13):801-806. Zheng Shuhui, Hou Fagao, Ni Baoling. A Study of Hydrogen and Oxygen Stable Isotopes of Atmospheric Precipitation in China[J]. Chinese Science Bulletin, 1983, 28(13):801-806.
[27] 李广,章新平,张新主,等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J].长江流域资源与环境,2013,22(11):1458-1465. Li Guang, Zhang Xinping, Zhang Xinzhu, et al. Stable Hydrogen Oxygen Isotopes Characteristics of Atmospheric Precipitation from Tengchong, Yunnan[J]. Resources and Environment in the Yangtze Basin, 2013, 22(11):1458-1465.
[28] 于津生,李耀菘,丁悌平.中国同位素地球化学研究[M].北京:科学出版社,1997:541-553. Yu Jinsheng, Li Yaosong, Ding Tiping. Isotope Geochemistry in China[M]. Beijing:Science Press, 1997:541-553.
[29] 汪集旸,熊亮萍,庞忠和. 中低温对流型地热系统[M]. 北京:科学出版社,1993:48-55. Wang Jiyang, Xiong Liangping, Pang Zhonghe. Low-Medium Temperature Geothermal System of Convective Type[M]. Beijing:Science Press, 1993:48-55.
[30] Dansgaard W. Stable Isotopes in Precipitation[J]. Tellus, 1964, 16:436-468.
[31] Robert R F, Blackwell D D, Birch F. Heat Generation of Plutonic Rocks and Continental Heat Flow Provinces[J]. Earth and Planetary Science Letters, 1968, 5:1-12.
[32] Artemieva I A, Mooney W D. Thermal Thickness and Evolution of Precambrian Lithosphere:A Global Study[J]. Journal of Geophysical Research Atmospheres, 2001, 106(B8):16.
[33] Haack U. On the Content and Vertical Distribution of K, Th and U in the Continental Crust[J]. Earth and Planetary Science Letters, 1983, 62(3):360-366.
[34] 朱炳球,来立新,史长义,等.地热田地球化学勘查[M].北京:地质出版社,1992:81-129. Zhu Bingqiu, Lai Lixin, Shi Changyi, et al. Geochemical Exploration of Geothermal Fields[M]. Beijing:Geological Publishing House, 1992:81-129.
[35] Truesdell A H, Fournier R O. Procedure for Estimating the Temperature of a Hot-Water Component in a Mixed Water by Using a Plot of Dissolved Silica Versus Enthalpy[J]. Journal of Research United States Geological Survey, 1977, 5(1):49-52.
[36] 吴红梅,周立岱,郭宇.阳离子温标在中低温地热中的应用研究[J].黑龙江科技学院学报,2006,16(1):27-30. Wu Hongmei, Zhou Lidai, Guo Yu. Application of Cation Temperature Scale in Medium-Low Temperature Geothermal Resource[J]. Journal of Heilongjiang Institute of Science & Technology, 2006, 16(1):27-30.
[37] 孙占学,吴红梅. 地热系统中矿物-流体化学平衡的判断及热储温度的计算[J]. 中国地质科学院院报,1999, 20(1):595-598. Sun Zhanxue, Wu Hongmei. Calculation of the Fluid-Rock Equilibrium State in the Geothermal System[J]. Bulletin of the Chinese Academy of Geological Sciences, 1999, 20(1):595-598.
[38] 王莹,周训,于援,等.应用地热温标估算地下热储温度[J].现代地质,2007,21(4):605-612. Wang Ying, Zhou Xun, Yu Yuan, et al. Application of Geothermometers to Calculation of Temperature of Geothermal Reservoirs[J]. Geoscience, 2007, 21(4):605-612.
[39] 单玄龙,蔡壮,郝国丽,等.地球化学温标估算长白山地热系统热储温度[J].吉林大学学报(地球科学版),2019,49(3):662-672. Shan Xuanlong, Cai Zhuang, Hao Guoli, et al. Estimation of Thermal Storage Temperature of Geothermal System in Changbai Mountain by Geothermometers[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):662-672.
[40] 肖琼,沈立成,杨雷,等. 重庆北温泉地热水碳硫同位素特征研究[J].水文地质工程地质,2013,40(4):127-133. Xiao Qiong, Shen Licheng, Yang Lei, et al. Environmental Significance of Carbon and Sulfur Isotopes of the North Hot Spring in Chongqing[J]. Hydrogeology & Engineering Geology, 2013, 40(4):127-133.
[41] 周真恒,向才英. 云南岩石圈地温分布[J]. 地震地质, 1997, 19(3):227-234. Zhou Zhenheng, Xiang Caiying. Distribution of the Lithospheric Geotemperature in Yunnan[J]. Seismology and Geology, 1997, 19(3):227-234.
[42] 周真恒,向才英,赵晋明. 滇西地热场特征[J]. 地震研究, 1995, 18(1):41-48. Zhou Zhenheng, Xiang Caiying, Zhao Jinming. Characteristics of Geothermal Field in West Yunnan[J]. Journal of Seismological Research, 1995, 18(1):41-48.
[43] 刘永涛. 云南省龙陵县邦腊掌温泉水文地球化学与间歇喷泉研究[D]. 北京:中国地质大学(北京), 2009. Liu Yongtao. A Study of Hydrochemistry and Geyser of Thermal Groundwater in the Banglazhang Geothermal Field in Longling, Yunnan[D]. Beijing:China University of Geosciences(Beijing), 2009.
[44] 张中杰,白志明,王椿镛,等. 三江地区地壳结构及动力学意义:云南遮放-宾川地震反射/折射剖面的启示[J].中国科学:D辑:地球科学,2005,35(4):314-319. Zhang Zhongjie, Bai Zhiming, Wang Chunyong, et al. Crustal Structure and Dynamic Significance in Sanjiang Area:Implications of the Reflection/Refraction Profile of the Zhefang-Binchuan Earthquake in Yunnan Province[J]. Science in China:Series D:Earth Science, 2005, 35(4):314-319.
[45] 汪辑安,徐青,张文仁. 云南大地热流及地热地质问题[J]. 地震地质,1990,12(4),367-377. Wang Ji'an, Xu Qing, Zhang Wenren. Heat Flow Data and Some Geologic-Geothermal Problems in Yunnan Province[J]. Seismology and Geology, 1990, 12(4):367-377.
[46] 吴乾蕃,祖金华,谢毅真,等. 云南地区地热基本特征[J].地震地质,1988,10(4):177-183. Wu Qianfan, Zu Jinhua, Xie Yizhen, et al. Characteristics of Geothermal Field in Yunnan Region[J]. Seismology and Geology, 1988, 10(4):177-183.
[47] 钟大赉,丁林,刘福田,等. 造山带岩石层多向层架构造及其对新生代岩浆活动制约:以三江及邻区为例[J].中国科学:D辑:地球科学,2000,30(增刊1):1-8,177. Zhong Dalai, Ding Lin, Liu Futian, et al. Multi-Directional Shelf Structure of Rock Stratum in Orogenic Belt and Its Influence on the Cenozoic Magmatic Activities:A Case Study of Sanjiang and Its Adjacent Areas[J]. Science in China:Series D:Earth Science, 2000, 30(Sup.1):1-8,177.
[48] 孙洁,徐常芳,江钊,等. 滇西地区地壳上地幔电性结构与地壳构造活动的关系[J]. 地震地质, 1989, 11(1):35-45. Sun Jie, Xu Changfang, Jiang Zhao, et al. The Electrical Structure of the Crust and Upper Mantle in the West Part of Yunnan Province and Its Relation to Crustal Tectonics[J]. Seismology and Geology, 1989, 11(1):35-45.
[49] 上官志冠.腾冲热海地热田热储结构与岩浆热源的温度[J].岩石学报,2000,16(1):83-90. Shangguan Zhiguan. Structure of Geothermal Reservoirs and the Temperature of Mantle-Derived Magma Hot Source in the Rehai Area, Tengchong[J]. Acta Petrologica Sinica, 2000, 16(1):83-90.
[50] 孔祥儒,刘士杰,窦秦川,等. 攀西地区地壳和上地幔中的电性结构[J]. 地球物理学报,1987,30(2):136-143. Kong Xiangru, Liu Shijie, Dou Qinchuan, et al. Electrical Conductivity Structure in the Crust and Upper Mantle in the Region of Panxi Rift[J]. Acta Geophysica Sinca, 1987,30(2):136-143.
[51] 地热资源地质勘查规范:GB/T 11615-2010[S].北京:中国标准出版社,2010. Geologic Exploration Standard of Geothermal Resources:GB/T 11615-2010[S]. Beijing:China Standards Press, 2010.
[1] 樊文鑫, 李光明, 梁生贤. 西藏扎西康铅锌多金属矿床控矿构造的电性特征及找矿预测[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1709-1719.
[2] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[3] 杨爱雪, 孙德有, 侯雪刚, 王久良, 张继林, 李临位. 冀东峪耳崖金矿区闪长岩脉地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 416-428.
[4] 王世成, 杨仲杰, 杨菊, 张璟, 孙守亮, 刘长纯. 辽东石庙沟岩体岩石地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 429-441.
[5] 张淑亮, 王霞, 郭文峰, 陈慧, 李惠玲. 多种地球物理场观测数据中亚失稳现象[J]. 吉林大学学报(地球科学版), 2021, 51(2): 571-583.
[6] 周越, 曾昭发, 唐海燕, 张建民, 何滔. 公路勘察中滑坡体的地球物理特征与分析——以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 638-644.
[7] 林成贵, 姚晓峰, 程志中, 颜廷杰, 李生辉, 王伟. 辽宁省桃源铅锌矿床成矿物质来源——硫、铅同位素组成特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 81-94.
[8] 范蕾, 王国芝, 石学法, Astrid Holzheid, Basem A. Zoheir. 南大西洋中脊26°S热液区成矿物质来源探讨[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1648-1659.
[9] 明添学, 杨清标, 李蓉, 唐忠, 薛戈, 罗建宏, 余海军, 李永平. 滇西加里东期平河复式花岗岩体锆石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1685-1702.
[10] 周聪, 汤井田, 原源, 李广, 肖晓, 邓居智. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1870-1886.
[11] 李洪梁, 李光明, 丁俊, 张志, 卿成实, 付建刚, 凌晨, 刘宇奇. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1289-1303.
[12] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323-1339.
[13] 孙永刚, 李碧乐, 孙丰月, 董峻麟, 钱烨, 姚振. 青海省巴斯湖铅锌矿床M9矿体成因探讨——流体包裹体和H-O-S同位素约束[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1373-1386.
[14] 黄式庭, 于晓飞, 吕志成, 刘家军, 李永胜, 杜泽忠, 吕鑫, 孙海瑞, 杜轶伦. 甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1387-1403.
[15] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .