吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 13-24.doi: 10.13278/j.cnki.jjuese.201501102
陈欢庆1, 梁淑贤1, 舒治睿2, 邓晓娟1, 彭寿昌2
Chen Huanqing1, Liang Shuxian1, Shu Zhirui2, Deng Xiaojuan1, Peng Shouchang2
摘要:
冲积扇砾岩储层作为陆相沉积储层十分重要的类型之一, 一直是我国油气勘探开发的重点领域。以准噶尔盆地西北缘某区下克拉玛依组为例, 根据砾岩储层相变快、储层非均质性强等特点, 在沉积相分析的基础上, 对储层构型特征进行了精细分析, 将储层划分为槽流砾石体、槽滩砂砾体、漫洪内砂体、漫洪内细粒、片流砾石体、漫洪外砂体、漫洪外细粒、辫流水道、辫流砂砾坝、漫流砂体、漫流细粒、径流水道和水道间细粒共13种构型单元, 其中以槽流砾石体、片流砾石体、辫流水道和辫流砂砾坝占主导。构型解剖结果显示:研究区砾岩储层槽流砾石体平面呈条带状, 剖面厚度大, 为2~8 m;片流砾石体沉积厚度大, 一般为2~7 m;辫流水道构型单元宽度为80~400 m, 剖面呈透镜状, 厚度为2~7 m;辫流砂砾坝沉积厚度较大, 为2~7 m。上述构型单元受北部和西北部方向物源控制明显。储层构型特征能有效反映储层非均质性、连通性等属性, 对油田开发具有较强的控制作用。
中图分类号:
[1] 吴胜和.储层表征与建模[M].北京:石油工业出版社, 2010:136-174. Wu Shenghe. Reservoir Characterization & Modeling[M]. Beijing:Petroleum Industry Press, 2010:136-174.[2] 兰朝利, 吴峻, 张为民, 等.冲积沉积构型单元分析法:原理及其适用性[J].地质科技情报, 2001, 20(2):37-40. Lan Chaoli, Wu Jun, Zhang Weimin, et al. Architectural Element Analysis for Alluvial Deposits:Principle and Applicability[J].Geological Science and Technology Information, 2001, 20(2):37-40.[3] Rayl S, Chakraborty T. Lower Gondwana Fluvial Succession of the Pench-Kanhan Valley, India:Stratigraphic Architecture and Depositional Controls[J]. Sedimentary Geology, 2002, 151:243-271.[4] Prather B E. Controls on Reservoir Distribution, Architecture and Stratigraphic Trapping in Slope Settings[J]. Marine and Petroleum Geology, 2003, 20:529-545.[5] Williams B P J, Hillier R D. Variable Alluvial Sandstone Architecture Within the Lower Old Red Sandstone, Southwest Wales[J]. Geological Journal, 2004, 39:257-275.[6] 岳大力, 吴胜和, 刘建民. 曲流河点坝地下储层构型精细解剖方法[J].石油学报, 2007, 28(4):99-103. Yue Dali, Wu Shenghe, Liu Jianmin. An Accurate Method for Anatomizing Architecture of Subsurface Reservoir in Point Bar of Meandering River[J]. Acta Petrolei Sinica, 2007, 28(4):99-103.[7] 陈欢庆, 朱筱敏. 精细油藏描述中的沉积微相建模进展[J]. 地质科技情报, 2008, 27(2):73-79. Chen Huanqing, Zhu Xiaomin. Microfacies Modeling in Fine Reservoir Description[J]. Geological Science and Technology Information, 2008, 27(2):73-79.[8] 伊振林, 吴胜和, 杜庆龙, 等.冲积扇储层构型精细解剖方法:以克拉玛依油田六中区下克拉玛依组为例[J].吉林大学学报:地球科学版, 2010, 40(4):939-946. Yi Zhenlin, Wu Shenghe, Du Qinglong, et al. An Accurate Anatomizing Method for Structure of Reservoir of Alluvial Fan:A Case Study on Lower Karamay Formation, Liuzhong Area, Karamay Oilfield[J]. Journal of Jilin University:Earth Science Edition, 2010, 40 (4):939-946.[9] 陈平, 陆永潮, 杜学斌, 等.准噶尔盆地腹部压性背景下"二元体系域"层序构型特征及其形成机理[J].地质科学, 2010, 45(4):1078-1087. Chen Ping, Lu Yongchao, Du Xuebin, et al. Dual Characteristic of Sequence Structures and Forming Mechanism in Compressional Abdominal Area of Junggar Basin[J]. Chinese Journal of Geology, 2010, 45 (4):1078-1087.[10] 曾祥平.储集层构型研究在油田精细开发中的应用[J].石油勘探与开发, 2010, 37(4):483-489. Zeng Xiangping. Application of Reservoir Structure Research in the Fine Exploitation of Oilfields [J]. Petroleum Exploration and Development, 2010, 37(4):483-489.[11] 王凤兰, 白振强, 朱伟. 曲流河砂体内部构型及不同开发阶段剩余油分布研究[J].沉积学报, 2011, 29(3):512-519. Wang Fenglan, Bai Zhenqiang, Zhu Wei. Study on Geological 3D Reservoir Architecture Modeling and Distribution of Remaining Oil of Different Development Stage in Meandering Reservoir[J].Acta Sedimentologica Sinica, 2011, 29(3):512-519.[12] Olariu M I, Aiken C L V, Bhattacharya J P. Interpretation of Channelized Architecture Using Three-Dimensional Photo Real Models, Pennsylvanian Deep-Water Deposits at Big Rock Quarry, Arkansasq[J]. Marine and Petroleum Geology, 2011, 28:1157-1170.[13] 侯加根, 刘钰铭, 徐芳, 等.黄骅坳陷孔店油田新近系馆陶组辫状河砂体构型及含油气性差异成因[J].古地理学报, 2008, 10(5):459-464. Hou Jiagen, Liu Yuming, Xu Fang, et al. Architecture of Braided Fluvial Sandbody and Origin for Petroliferous Diference of the Guantao Formation of Neogene in Kongdian Oilfield of Huanghua Depression[J]. Journal of Palaeogeography, 2008, 10(5):459-464.[14] 吴胜和, 范峥, 许长福, 等. 新疆克拉玛依油田三叠系克下组冲积扇内部构型[J].古地理学报, 2012, 14(3):331-340. Wu Shenghe, Fan Zheng, Xu Changfu, et al. Internal Architecture of Alluvial Fan in the Triassic Lower Karamay Formation in Karamay Oilfield, Xinjiang[J]. Journal of Palaeogeography, 2012, 14 (3):331-340.[15] 郑占, 吴胜和, 许长福, 等.克拉玛依油田六区克下组冲积扇岩石相及储层质量差异[J].石油与天然气地质, 2010, 31(4):463-471. Zheng Zhan, Wu Shenghe, Xu Changfu, et al. Lithofacies and Reservoirs of Allluvial Fan in the Lower Keramay Formation in the Block 6 of Karamay Oilfield, the Junggar Basin[J]. Oil & Gas Geology, 2010, 31(4):463-471.[16] 姜在兴.沉积学[M].北京:石油工业出版社, 2003:270-282. Jiang Zaixing. Sedimentary[M]. Beijing:Petroleum Industry Press, 2003:270-282.[17] 李庆昌, 吴虻, 赵立春, 等. 砾岩油田开发[M].北京:石油工业出版社, 1997. Li Qingchang, Wu Meng, Zhao Lichun, et al.Development of Conglomerate Oilfield[M]. Beijing:Petroleum Industry Press, 1997. |
[1] | 刘海, 林承焰, 张宪国, 王宏伟, 付晓亮, 李佳. 孔店油田馆陶组辫状河储层构型及剩余油分布规律[J]. 吉林大学学报(地球科学版), 2018, 48(3): 665-677. |
[2] | 马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹. 准噶尔盆地南缘古牧地背斜多期构造变形特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1695-1704. |
[3] | 高崇龙, 纪友亮, 靳军, 王剑, 任影, 车世琦, 王茹, 桓芝俊. 准噶尔盆地莫索湾地区清水河组深层优质储层特征及其物性控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 990-1006. |
[4] | 张建坤, 杨国涛, 吴吉忠, 吴鑫, 王方鲁. 黄骅坳陷北部马头营凸起馆陶组砂体成因及展布特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 48-60. |
[5] | 孙靖, 宋永, 王仕莉, 薛晶晶, 贾开富, 常秋生. 准噶尔盆地深层致密油储层特征及致密化成因——以莫索湾-莫北地区侏罗系八道湾组为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 25-33. |
[6] | 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264. |
[7] | 王璞珺, 缴洋洋, 杨凯凯, 张增宝, 边伟华. 准噶尔盆地火山岩分类研究与应用[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1056-1070. |
[8] | 杜小弟, 李锋, 邱海峻, 李昭, 徐银波. 准东博格达山山前带二叠系芦草沟组重油的发育特征及其指示意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 368-378. |
[9] | 陈波, 王子天, 康莉, 张顺存, 史基安. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化[J]. 吉林大学学报(地球科学版), 2016, 46(1): 23-35. |
[10] | 高帅, 马世忠, 庞雄奇, 巩磊, 陈昶旭, 高昂, 秦旗. 准噶尔盆地腹部侏罗系油气成藏主控因素定量分析及有利区预测[J]. 吉林大学学报(地球科学版), 2016, 46(1): 36-45. |
[11] | 何辉, 孔垂显, 蒋庆平, 邓西里, 肖芳伟, 李顺明. 准噶尔盆地西北缘二叠系火山岩储层裂缝发育特征及分布预测—以金龙2井区佳木河组为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1278-1288. |
[12] | 董大伟, 李理, 王晓蕾, 赵利. 准噶尔盆地西缘车排子凸起构造演化及断层形成机制[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1132-1141. |
[13] | 张家政,崔金栋,杨荣国. 准噶尔盆地红山嘴油田石炭系火山岩裂缝储层特征[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1629-1637. |
[14] | 翟志伟, 施尚明, 朱焕来, 师江波. 杏南开发区葡Ⅰ31小层废弃河道类型及其研究意义[J]. J4, 2011, 41(4): 999-1005. |
[15] | 刘洛夫, 孟江辉, 王维斌, 靳军, 吴琳, 赵彦德, 王萍, 支东明. 准噶尔盆地西北缘车排子凸起上、下层系原油的地球化学特征差异及其意义[J]. J4, 2011, 41(2): 377-390. |
|