吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (2): 564-572.doi: 10.13278/j.cnki.jjuese.201502205
侯大力1,2, 罗平亚2, 王长权3, 孙雷2, 汤勇2, 潘毅2
Hou Dali1,2, Luo Pingya2, Wang Changquan3, Sun Lei2, Tang Yong2, Pan Yi2
摘要:
利用自行研制的高温高压反应釜,在不同温度、压力和矿化度条件下测试CO2在地层水中的溶解度。实验结果表明:温度一定的条件下,CO2在水中的溶解度随压力的增加而增加;压力一定的条件下,CO2在水中溶解度的主要变化趋势为随温度的增加而降低,当温度大于100℃、压力在22 MPa左右时,CO2在地层水中的溶解度将发生异常,出现低压(小于22 MPa)时随温度的增加而降低,高压(大于22 MPa)时随温度的增加而略微升高;在温度压力都一定的条件下,CO2在水中的溶解度随矿化度的增加而降低。并且,在新测得的实验数据和已有的实验数据的基础上,通过修正PR-HV状态方程中的参数,建立了一个能够精确计算CO2在水中溶解度的模型;并将该模型与其他模型对比。对比结果表明,该模型计算精度最高,平均相对误差仅为2.69%。
中图分类号:
[1] 许志刚, 陈代钊, 曾荣树, 等. CO2地下地质埋存原理和条件[J].西南石油大学学报:自然科学版, 2009, 31(1):91-97. Xu Zhigang, Chen Daizhao, Zeng Rongshu, et al, The Principles of CO2 Geological Storage and the Conditions of CO2 Geological Storage[J]. Journal of Southwest Petroleum University:Natural Sciences, 2009, 31(1):91-97.[2] 沈平平, 廖维新.二氧化碳地质埋存与提高石油采收率技术[M]. 北京:石油工业出版社, 2009. Shen Pingping, Liao Weixin.The Geological Storage of CO2 and EOR Technology[M]. Beijing: Petroleum Industry Press, 2009.[3] 汤勇, 杜志敏, 张哨楠, 等.高温气藏近井带地层水蒸发和盐析研究[J]. 西南石油大学学报:自然科学版, 2007, 29(2):96-99. Tang Yong, Du Zhimin, Zhang Shaonan, et al.Research on the Evaporation of Formation Water and Salting-Out in the Near Wellbore Formation in Hot Gas Reservoir[J]. Journal of Southwest Petroleum University:Natural Sciences, 2007, 29(2):96-99.[4] 李琴, 李治平, 胡云鹏, 等.深部盐水层 CO2埋藏量计算方法研究与评价[J].特种油气藏, 2011, 18(5):6-10, 32. Li Qin, Li Zhiping, Hu Yunpeng, et al.Assessment and Research on the Calculation Method of the Amount of CO2 Storage for Deep Saline Aquifers[J]. Special Oil & Gas Reservoirs, 2011, 18(5):6-10, 32.[5] Duan Z H, Sun R, Zhu C, et al. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl- and SO42-[J]. Marine Chemistry, 2006, 98(2):131-139.[6] Chang Y B, Coats B K, Nolen J S, et al. A Com-positional Model for CO2 Floods Including CO2 Solubility in Water[J]. SPEJ, 1998, 1(2):155-160.[7] Furnival J S, Horstmann S, Fischer K, et al. Experimental Determination and Prediction of Gas Solubility Data for CO2+H2O Mixtures Containing NaCl or KCl at Temperatures Between 313 and 393 K and Pressures up to 10 MPa[J].Industrial & Engineering Chemistry Research, 2002, 41(1): 4393-4398.[8] Mao S D, Zhang D H, Li Y Q, et al. An Improved Model for Calculating CO2 Solubility in Aqueous NaCl Solutions and the Application to CO2-H2O-NaCl Fluid Inclusions[J]. Chemical Geology, 2013(6):43-58.[9] Yan W, Huang S L, Stenby E H. Measurement and Modeling of CO2 Solubility in NaCl Brine and CO2-Saturated NaCl Brine Density[J]. International Journal of Greenhouse Gas Control, 2011, 5(6):1460-1477.[10] Bikkina P K, Shoham O, Uppaluri R. Equilibrated Interfacial Tension Data of the CO2-Water System at High Pressures and Moderate Temperatures[J]. Journal of Chemical & Engineering Data, 2011, 56(1):3725-3733.[11] Liu Y H, Hou M Q, Yang G Y, et al. Solubility of CO2 in Aqueous Solutions of NaCl, KCl, CaCl2 and Their Mixed Salts at Different Temperatures and Pressures[J]. The Journal of Supercritical Fluids, 2011, 56(2):125-129.[12] 李德栋.气-水-盐-矿体系相平衡耦合化学平衡及其在二氧化碳地质储存数值模拟中的应用[D].兰州:中国科学院兰州分院, 2008. Li Dedong.Phase Equilibria and Coupled Chemical Equilibrium in Gas-Water-Sale-Mine System and its Application in Numerical Modeling for the Geological Storage of CO2[D]. Lanzhou: Lanzhou Branch, Chinese Academy of Science, 2008.[13] Jo1decke M, Kamps A P, Maurer G. Experimental Investigation of the Solubility of CO2 in (Acetone + Water)[J]. Journal of Chemical & Engineering Data, 2007, 52(6):1003-1009.[14] Hu J W, Duan Z H, Zhu C, et al. PVT Properties of the CO2-H2O and CO2-H2O-NaCl Systems Below 647 K: Assessment of Experimental Data and Thermodynamic Models[J]. Chemical Geology, 2007(2):249-267.[15] Portier S, Rochellec C. Modeling CO2 Solubility in Pure Water and NaCl-Type Waters from 0 to 300℃ and from 1 to 300 bar:Application to the Utsira Formation at Sleipner[J]. Chemical Geology, 2005, 217(3):187-199.[16] Duan Z H, Sun R. An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions from 273 to 533 K and from 0 to 2 000 bar[J]. Chemical Geology, 2003(4):257-271.[17] Bando S, Takemura F, Nishio M, et al. Solubility of CO2 in Aqueous Solutions of NaCl at (30 to 60)℃ and(10 to 20) MPa[J]. Journal of Chemical & Engineering Data, 2003, 48(4):576-579.[18] Diamond L, Akinfiev N. Solubility of CO2 in Water from-1.5 to 100℃ and from 0.1 to 100 MPa: Evaluation of Literature Data and Thermodynamic Modeling[J]. Fluid Phase Equilibria, 2003, 208(1):265-290.[19] Enick R, Klara S. CO2 Solubility in Water and Brine Under Reservoir Conditions[J]. Chem Eng Commun, 1990, 90(3):23-33.[20] Nighswander J A, Kalogerakis N, Mehrotra A K. Solubilities of Carbon Dioxide in Water and 1 wt% Sodium Chloride Solution at Pressures up to 10 MPa and Temperatures from 80 to 200 Degree[J]. Journal of Chemical & Engineering Data, 1989, 34(3):355-360.[21] 郑菲, 施小清, 吴吉春, 等. 深部咸水层CO2地质封存数值模拟参数的全局敏感性分析:以苏北盆地盐城组为例[J].吉林大学学报:地球科学版, 2014, 44(1):310-318. Zheng Fei, Shi Xiaoqing, Wu Jichun, et al. Global Parametric Sensitivity Analysis of Numerical Simulation for CO2 Geological Sequestration in Saline Aquifers: A Case Study of Yancheng Formation in Subei Basin[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(1):310-318.[22] Chapoy A, Mohammadi A H, Tohidi B, et al.Gas Solubility Measurement and Modeling for the Nitrogen+Water System from 274.18 K to 363.02 K[J]. J Chem Eng Data, 2004, 49(3):1110-1115.[23] Spycher N, Pruess K. A Phase-Partitioning Model for CO2-Brine Mixtures at Elevated Temperatures and Pressure: Application to CO2-Enhanced Geothermal Systems[J].Transp Porous Med, 2010, 82(1):173-196.[24] Huron M J, Vidal J. New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid-Equilibria of Strongly Non-Ideal Mixtures[J]. Fluid Phase Equilibria, 1979, 3(4):255-271. |
[1] | 刁玉杰, 张森琦, 李甫成, 郜时旺, 王晓龙, 贾小丰. 典型电厂海洋CO2地质储存场地选址适宜性评估[J]. 吉林大学学报(地球科学版), 2016, 46(3): 844-854. |
[2] | 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501. |
[3] | 雷宏武, 李佳琦, 许天福, 王福刚. 鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(2): 552-563. |
[4] | 莫绍星, 龙星皎, 李瀛, 郑菲, 施小清, 张可霓, 赵良. 基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1647-1658. |
[5] | 杨艳林,许天福,李佳琦,王福刚. 应用TOUGH模拟二氧化碳地质储存过程的复杂地质体建模技术与实现[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1307-1313. |
[6] | 郑菲,施小清,吴吉春,赵良,陈旸. 深部咸水层CO2地质封存数值模拟参数的全局敏感性分析:以苏北盆地盐城组为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 310-318. |
[7] | 张凤君,赵静,王天野,陶怡,刘卓婧,许天福. 土著微生物对CO2地质储存过程中水岩作用的影响[J]. 吉林大学学报(地球科学版), 2013, 43(2): 544-551. |
[8] | 曲希玉, 杨会东, 刘立, 刘娜, 齐赞, 唐惠. 松南油伴生CO2气的成因及其对油气藏的影响[J]. 吉林大学学报(地球科学版), 2013, 43(1): 39-48. |
[9] | 张凤君, 王怀远, 王广华, 杨潇瀛, 王天野, 刘娜. CO2流体与储层砂岩相互作用机理实验[J]. J4, 2012, 42(3): 821-826. |
[10] | 俞宏伟, 杨思玉, 李实, 杨永智. 低渗透油藏CO2驱过程中含水率变化规律[J]. J4, 2011, 41(4): 1028-1032. |
[11] | 范泓澈, 黄志龙, 袁剑, 高岗, 童传新. 富甲烷天然气溶解实验及水溶气析离成藏特征[J]. J4, 2011, 41(4): 1033-1039. |
[12] | 郭建强, 张森琦, 刁玉杰, 李旭峰, 张徽, 范基姣. 深部咸水层CO2地质储存工程场地选址技术方法[J]. J4, 2011, 41(4): 1084-1091. |
[13] | 朱焕来, 曲希玉, 刘立, 于志超, 张立东, 唐辉. CO2流体-长石相互作用实验研究[J]. J4, 2011, 41(3): 697-706. |
[14] | 刘立, 刘娜, 周冰, 赵爽, 孟凡奇, 姜龙. 松辽盆地南部红岗背斜幔源-岩浆成因CO2大规模泄露的岩石学记录[J]. J4, 2011, 41(2): 411-420. |
[15] | 杨光, 赵占银, 张伟. 松辽盆地南部无机CO2成藏机理与分布[J]. J4, 2010, 40(4): 932-938. |
|