吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (2): 552-563.doi: 10.13278/j.cnki.jjuese.201502204

• 地质工程与环境工程 • 上一篇    下一篇

鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟

雷宏武, 李佳琦, 许天福, 王福刚   

  1. 吉林大学地下水资源与环境教育部重点实验室, 长春 130021
  • 收稿日期:2014-05-06 发布日期:2015-03-26
  • 作者简介:雷宏武(1985-),男,博士,主要从事多相流数值模拟程序的开发和应用研究,E-mail:hongwulei2008@aliyun.com
  • 基金资助:

    中国地质调查局工作项目(12120113006300);国土资源部公益性行业科研专项项目(201211063-06);吉林大学博士交叉学科研究项目(2012JC014)

Numerical Simulation of Coupled Thermal-Hydrodynamic-Mechanical (THM) Processes for CO2 Geological Sequestration in Deep Saline Aquifers at Ordos Basin, China

Lei Hongwu, Li Jiaqi, Xu Tianfu, Wang Fugang   

  1. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
  • Received:2014-05-06 Published:2015-03-26

摘要:

注入CO2到深部咸水层(CO2地质储存)被认为是一种直接有效地减少CO2向大气排放的途径。CO2地质储存涉及到热、水动力和力学耦合过程,该耦合过程是预测CO2在储层中的迁移转化、评价储层储存能力和分析潜在风险的关键。基于Terzaghi固结理论,在热-水动力(TH)耦合软件TOUGH2框架中加入了力学模块,形成了新的热-水动力-力学(THM)模拟器。结合鄂尔多斯盆地CO2捕获和储存(CCS)示范工程场地的地质、水文地质条件,采用新的THM模拟器数值分析了CO2注入后地层中的温度、压力、CO2饱和度、位移和有效应力的时空变化特征。结果显示:在井口保持8 MPa和35℃情况下,能够实现10万 t/a的CO2注入量;压力上升的范围远远大于CO2运移和温度降低的范围,注入20 a后,其最大距离分别达到接近边界10 km、620 m和100 m;位移和应力变化主要与压力变化相关,注入引起最大抬升为0.14 m,在注入井附近位置储层中有效应力变化水平方向要大于垂直方向,而在远井位置相反;注入引起井附近有效应力明显减小,从而导致了孔隙度和渗透率的增大,增强了CO2注入能力。

关键词: CO2地质储存, 热-水动力-力学耦合过程, 数值模拟, 鄂尔多斯盆地

Abstract:

Injecting CO2 into deep saline aquifers, referred to as CO2 geological sequestration (CGS), is considered to be a promising method to reduce the emission of anthropogenic CO2 to atmosphere. CGS involves coupled thermal-hydrodynamic-mechanical (THM) processes, which are important for predicting migration and transformation of injected CO2, evaluating the reservoir performance, and assessing the risk associated. Based on the Terzaghi consolidation theory, a coupled mechanical module is developed that is incorporated into the existing simulator TOUGH2, which is a well-established code for TH processes in subsurface flow systems. Based on the geological and hydrogeological conditions of the Ordos CCS Demonstration Project, the new THM simulator is used to numerically analyze the spatial and temporal distribution of the temperature, pressure, CO2 saturation, vertical displacement, and effective stress. The results show that 105 metric tons of CO2 per year can be finished under the injection condition of wellhead pressure 8 MPa and 35℃. The lateral distance with pressure buildup is more than that of CO2 plume and that of temperature decrease. They are 10 km, 620 m and 100 m, respectively after 20 years' injection. The vertical displacement and change of the effective stress are mainly related to the change of the pressure. The maximum surface uplift is about 0.14 m. The effective stress change is more significant in the horizontal direction than that in the vertical direction near the injection well, while it's in the opposite away from the injection well. Injection induces an obvious decrease in the effective stress but enhances the porosity and permeability, this, in turn increases the CO2 injectivity ultimately.

Key words: CO2 geological sequestration, coupled thermal-hydrodynamic-mechanical processes, numerical simulation, Ordos basin

中图分类号: 

  • P641.69

[1] IPCC (Intergovernmental Panel on Climate Change). Carbon Dioxide Capture and Storage[R]. New York: Cambridge University Press, 2005.

[2] IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC[R]. New York: Cambridge University Press, 2007.

[3] Bachu S, Adams J J.Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution[J]. Energy Conversion and Management, 2003, 44(20): 3151-3175.

[4] Rutqvist J, Wu Y S, Tsang C F, et al. A Modeling Approach for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39: 429-442.

[5] Rutqvist J, Tsang C F. A Study of Caprock Hydromechanical Changes Associated with CO2 Injection into a Brine Formation[J]. Environmental Geology, 2002, 42: 296-305.

[6] Rutqvist J, Birkholzer J, Cappa F, et al. Estimating Maximum Sustainable Injection Pressure During Geological Sequestration of CO2 Using Coupled Fluid Flow and Geomechanical Fault-Slip Analysis[J]. Energy Conversion and Management, 2007, 48:1798-1807.

[7] Rinaldi A P, Rutqvist J. Modeling of Deep Fracture Zone Opening and Transient Ground Surface Uplift at KB-502 CO2 Injection Well, In Salah, Algeria[J]. International Jounal of Greenhouse Gas Control, 2013, 12:155-167.

[8] Taron J, Elsworth D, Min K B. Numerical Simulation of Thermal-Hydrologic-Mechanical-Chemical Processes in Deformable, Fractured Media[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46: 842-854.

[9] 于子望, 张延军, 张庆, 等. TOUGHREACT搭接FLAC3D算法[J]. 吉林大学学报:地球科学版, 2013, 43(1): 199-206. Yu Ziwang, Zhang Yanjun, Zhang Qing, et al. Algorithm of TOUGHREACT Links to FLAC3D[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(1): 199-206.

[10] Winterfeld P H, Wu Y S. Parallel Simulation of CO2 Sequestration with Rock Deformation in Saline Aquifers[C].[S.l.]: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, 2011.

[11] Hu L T, Winterfeld P H, Fakcharoenphol P, et al. A Novel Fully-Coupled Flow and Geomechanics Model in Enhanced Geothermal Reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 107:1-11.

[12] Pruess K, Oldenburg C, George M. TOUGH2 User's Guide, Version 2.0[R]. Berkeley: Earth Science Division, Lawrence Berkeley National Laboratory, University of California, 1999.

[13] Pruess K, Garcia J, Kovscek T, et al. Code Intercomparison Builds Confidence in Numerical Simulation Models for Geological Disposal of CO2[J]. Energy, 2004, 29: 1431-1444.

[14] Pruess K, Garcia J. Multiphase Flow Dynamics During CO2 Disposal into Saline Aquifers[J]. Environmental Geology, 2002, 42: 282-295.

[15] Xu T, Sonnenthal E, Spycher N, et al. TOUGHREACT:A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geological Media: Application to Geothermal Injectivity and CO2 Geological Sequestration[J]. Computers & Geosciences, 2006, 32: 145-165.

[16] 许天福, 金光荣, 岳高凡, 等. 地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J]. 吉林大学学报:地球科学版, 2012, 42(5): 1410-1425. Xu Tianfu, Jin Guangrong, Yue Gaofan, et al. Subsurface Reactive Transport Modeling: A New Research Approach for Geo-Resources and Environments[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(5): 1410-1425.

[17] Pruess K. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2[R]. Berkeley: Earth Science Division, Lawrence Berkeley National Laboratory, University of California, 2004.

[18] 方云, 林彤, 谭松林. 土力学[M]. 武汉: 中国地质大学出版社, 2003. Fang Yun, Lin Tong, Tan Songlin. Soil Mechanics[M]. Wuhan: China University of Geosciences Press, 2003.

[19] Jaeger J C, Cook, N G W, Zimmerman R W.Fundamentals of Rock Mechanics[M].Malden: Blackwell Publishing, 2007.

[20] 任相坤, 崔永君, 步学朋, 等. 鄂尔多斯盆地CO2地质封存潜力分析[J]. 中国能源, 2010, 32(1): 29-32. Ren Xiangkun, Cui Yongjun, Bu Xuepeng, et al. The Potential Analysis of CO2 Geological Storage in Ordos Basin[J]. Energy of China, 2010, 32(1): 29-32.

[21] 吴秀章, 崔永君. 神华10万t/a CO2盐水层封存研究[J].石油学报: 石油加工, 2010(增刊1): 236-239. Wu Xiuzhang, Cui Yongjun. Study on 0.1 Mt/a CO2 Sequestration in Saline Formation[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2010(Sup.1): 236-239.

[1] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[2] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[3] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[4] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[5] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[6] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[7] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[8] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[9] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[10] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[11] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[12] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[13] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
[14] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[15] 刁玉杰, 张森琦, 李甫成, 郜时旺, 王晓龙, 贾小丰. 典型电厂海洋CO2地质储存场地选址适宜性评估[J]. 吉林大学学报(地球科学版), 2016, 46(3): 844-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!