吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1839-1845.doi: 10.13278/j.cnki.jjuese.201506301
朱凯光, 李冰冰, 王凌群, 谢宾, 王琦, 程宇奇
Zhu Kaiguang, Li Bingbing, Wang Lingqun, Xie Bin, Wang Qi, Cheng Yuqi
摘要:
传统固定翼航空电磁探测采用总场dB/dt进行电导率深度成像,不仅损失多分量测量信息,dB/dt与电导率的非唯一性也影响数据的成像精度。笔者提出了一种基于磁场双分量(Bx, Bz)查表的联合电导率深度成像算法,根据固定翼电磁响应的正演计算,建立按时间道划分的Bx-Bz-电导率-飞行高度数据表,利用磁场双分量联合查表与插值算法确定视电导率,避免了由于电磁数据二值性引起的视导率不确定性问题;根据扩散深度公式得到视深度,并计算成像深度,从而得到双分量联合电导率深度成像结果。基于一维大地模型正演数据与准二维大地模型正演加噪数据,分别采用磁场双分量联合查表法、总场查表法和单分量查表法对仿真数据进行电导率深度成像,结果表明磁场双分量联合查表法优于单分量与总场查表法,较单分量电导率深成像精度提高了7%。
中图分类号:
[1] Fountain D. Airborne Electromagnetic Systems:50 Years of Development[J]. Exploration Geophysics, 1998, 29(2): 1-11.[2] Annan A P.Effect of Differential Transmitter/Receiver Motion on Airborne Transient EM Interpretation[J]. Geophysics, 1999, 49(1): 670-670.[3] 胡平, 李文杰, 李军峰, 等.固定翼时间域航空电磁勘查系统研发进展[J]. 地球学报,2012, 33(1): 7-12. Hu Ping, Li Wenjie, Li Junfeng, et al. The Advances in the Development of Fixed-Wing Airborne Time-Domain Electromagnetic System[J]. Acta Geoscientica Sinica, 2012, 33(1): 7-12.[4] Macnae J C, Smith R, Polzer B D, et al. Conductivity-Depth Imaging of Airborne Electromagnetic Step-Response Data[J]. Geophysics, 1991, 56(1): 102-114.[5] 嵇艳鞠, 冯雪, 于明媚, 等.基于多元线性回归的HTEM三维异常体电导率-深度识别[J]. 吉林大学学报:地球科学版,2014, 44(5), 1687-1694. Ji Yanju, Feng Xue, Yu Mingmei, et al. Conductivity-Depth Identification of HTEM 3D Anomalies Based on Multiple Linear Regression[J]. Journal of Jilin University: Earth Science Edition, 2014, 44(5), 1687-1694.[6] Liu G, Asten M. Conductance-Depth Imaging of Airborne TEM data[J]. Exploration Geophysics,1994, 24(4): 655-662.[7] Wolfgram P, Karlik G. Conductivity-Depth Transform of GEOTEM Data[J]. Exploration Geophysics, 1995, 26(2/3): 179-185.[8] Huang H, Rudd J. Conductivity-Depth Imaging of Helicopter-Borne TEM Data Based on a Pseudolayer Half-Space Model[J]. Geophysics, 2008,73(3): 115-120.[9] 朱凯光, 林君, 韩悦慧, 等.基于神经网络的时间域直升机电磁数据电导率深度成像[J]. 地球物理学报,2010, 53(3): 743-750. Zhu Kaiguang, Lin Jun, Han Yuehui, et al. Research on Conductivity Depth Imaging of Time Domain Helicopter-Borne Electromagnetic Data Based on Neural Network[J]. Chinese Journal of Geophysics, 2010, 53(3): 743-750.[10] 陈小红, 段奶军.时间域航空电磁快速成像研究[J]. 地球物理学进展, 2012,27(5): 2123-2127. Chen Xiaohong, Duan Naijun. Study on Fast Imaging of Airborne Time-Domain Electromagnetic Data[J]. Progress in Geophys., 2012, 27(5): 2123-2127.[11] 毛立峰.中心回线式直升机TEM资料的电导率-深度成像方法[J]. CT 理论与应用研究, 2013,22(3): 429-437. Mao Lifeng. Conductivity-Depth Imaging Algorithm for Central-Loop Helicopter TEM[J]. CT Theory and Applications, 2013, 22(3): 429-437.[12] Smith R S, Keating P B. The Usefulness of Multicomponent, Time-Domain Airborne Electromagnetic Measurements[J]. Geophysics, 1996, 61(1): 74-81.[13] 席振铢, 刘剑, 龙霞, 等.瞬变电磁法三分量测量方法研究[J]. 中南大学学报:自然科学版,2010,41(1):272-276. Xi Zhenzhu, Liu Jian, Long Xia, et al.Three-Component Measurement in Transient Electromagnetic Method[J]. Journal of Central South University: Science and Technology, 2010, 41(1): 272-276.[14] 张莹莹.水平电偶源地空系统瞬变电磁法多分量解释技术及全域视电阻率定义研究[D]. 西安: 长安大学,2013. Zhang Yingying. Study on Multi-Component Interpretation and Full Field Apparat Resistivity Definition of Semi-Airborne Transient Electromagnetic Method with Electric Dipole on the Surface[D]. Xi'an: Chang'an University, 2013.[15] 王琦, 林君, 于生宝, 等. 固定翼航空电磁系统的线圈姿态及吊舱摆动影响研究与校正[J]. 地球物理学报,2013,56(11):3741-3750. Wang Qi, Lin Jun, Yu Shengbao, et al. Study on Influence and Correction of Coil Attitude and Bird Swing for Fixed-Wing Time-Domain Electromagnetic System[J]. Chinese Journal of Geophysics, 2013, 56(11):3741-3750.[16] Huang H. Locating Good Conductors by Using the B-Field Integrated From Partial dB/dt Waveforms of Time-Domain EM Systems[C]. SEG/San Antonio Annual Meeting. San Antonio: SEG, 2007: 688-692.[17] Wait J R. Geo-Electromagnetism[M]. [S.l.]: Academic Press Inc,1982.[18] Guptasarma D, Singh B. New Digital Linear Filters for Hankel J0 and J1 Transforms[J]. Geophysical Prospecting, 1997, 45(5): 745-762.[19] Guptasarma D, Singh B. Computation of the Time-Domain Response of a Polarizable Ground[J]. Geophysics, 1982, 47(11): 953-963.[20] Wolfgram P, Karlik G. Conductivity-Depth Transform of GEOTEM Data[J].Exploration Geophysics, 1995, 26(3): 179-185.[21] Vrbancich J, Fullagar P K, Macnae J. Bathymetry and Seafloor Mapping via One Dimensional Inversion and Conductivity Depth Imaging of AEM[J]. Exploration Geophysics, 2000,31(4): 603-610.[22] 马铭遥.时间域航空电磁数据全波成像与处理技术研究[D]. 长春: 吉林大学,2013. Ma Mingyao. Study on Full-Waveform Imaging and Processing of Time-Domain Airborne Electromagnetic Data[D]. Changchun: Jilin University, 2013. |
[1] | 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880. |
[2] | 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482. |
[3] | 王焱, 鹿琪, 刘财, 佘松盛, 刘四新. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2): 491-500. |
[4] | 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260. |
[5] | 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270. |
[6] | 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561. |
[7] | 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267. |
[8] | 刘永亮, 李桐林, 朱成, 关振伟, 苏晓波. 基于拟线性积分方程法的三维电磁场数值模拟精度分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1268-1277. |
[9] | 陈帅, 李桐林, 张镕哲. 考虑激发极化效应的瞬变电磁一维Occam反演[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1278-1285. |
[10] | 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318. |
[11] | 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883. |
[12] | 翁爱华, 刘佳音, 贾定宇, 杨悦, 李建平, 李亚彬, 赵祥阳. 有限长导线源频率测深有限内存拟牛顿一维反演[J]. 吉林大学学报(地球科学版), 2017, 47(2): 597-605. |
[13] | 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644. |
[14] | 罗天涯, 熊彬, 蔡红柱, 陈欣, 刘云龙, 兰怀慷, 李祖强, 梁卓. 复杂电性结构大地电磁二维响应特征[J]. 吉林大学学报(地球科学版), 2017, 47(1): 215-223. |
[15] | 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836. |
|