吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 295-302.doi: 10.13278/j.cnki.jjuese.201601307

• 地球探测与信息技术 • 上一篇    

软土基坑隔水帷幕渗漏检测技术

孟庆生1, 韩凯1, 刘涛1, 高镇2   

  1. 1. 中国海洋大学环境科学与工程学院, 山东青岛 266100;
    2. 山东省城乡建设勘察院, 济南 250031
  • 收稿日期:2015-04-20 出版日期:2016-01-26 发布日期:2016-01-26
  • 作者简介:孟庆生(1972),男,副教授,博士,主要从事工程地球物理探测技术方面的研究和教学工作,E-mail:qingsheng@ouc.edu.cn
  • 基金资助:

    岩土及地下工程教育部重点实验室开发基金项目(KLE-TJGE-B1107);国家自然科学基金项目(41202204)

Leakage Detection in Waterproof Curtain of Soft Soil Foundation Pit

Meng Qingsheng1, Han Kai1, Liu Tao1, Gao Zhen2   

  1. 1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Shandong Province Inv. & Surv. Institute of Urb. & Rur. Construction, Jinan 250031, China
  • Received:2015-04-20 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education Development Fund Project (KLE-TJGE-B1107) and the National Natural Science Fund Project (41202204)

摘要:

隔水帷幕渗漏是影响软土基坑稳定性的关键问题。针对隔水帷幕渗漏检测技术,开展了数值模拟和物理模型试验,深入研究了不同采集装置类型三维电阻率法和探地雷达法对渗漏异常的反映能力及在探测剖面上表现出来的异常特征,给出了判断帷幕是否渗漏和确定渗漏点位置的解释方法。结果表明:温纳装置、偶极装置和温纳-施龙贝格装置都能有效反映渗漏点的存在;降水后帷幕未发生渗漏时,与基坑外侧软土含水层相比,内侧软土层电阻率表现为高阻异常;帷幕渗漏后基坑内侧底部软土层电阻率降低,外侧电阻率升高,并呈现漏斗状异常,两侧低阻异常与帷幕的交叉点可正确指示渗漏点位置;帷幕发生渗漏后,基于基坑外侧的探地雷达探测剖面中会出现双曲型反射波同相轴,通过其顶点可确定渗漏点的位置。研究结果证实了两种地球物理手段开展软土基坑隔水帷幕渗漏检测的可行性。

关键词: 软土基坑, 隔水帷幕, 渗漏检测, 电阻率, 探地雷达

Abstract:

The leakage of waterproof curtain is a serious problem for the stability of soft soil foundation pit. In respect of the leakage detection methods of waterproof curtain, the numerical simulation and indoor physical model test were performed to verify the ability to determine the leakage position of the three different arrays of 3D resistivity methods and GPR method, and to discuss the anomaly characteristics in detecting profile. At the same time, the judgment of whether the waterproof curtain leak or not and the interpretation method of leakage position were also made. The research shows that:the resistivity method can reflect the existence of leakage position effectively by Wenner array, dipole-dipole array, and Wenner-Schlumberger array; it reveals high resistivity of soil inside foundation pit compared with that of outside the foundation pit without leakage of waterproof curtain; on the contrary, the resistivity will decrease at the bottom of saturation soil inside foundation pit, and it will increase outside the foundation pit and presents the funnel-shaped anomaly with leakage of waterproof curtain; using the cross point among the low resistivity anomalies and the curtain, we can also find the leakage position of waterproof curtain; in addition, there will show a hyperbolic reflection events in GPR detection profile after leakage of waterproof curtain, and we can also determine the leakage position through the vertex of the hyperbolic reflection. The results proved the feasibility of these two kinds of geophysical methods to carry out the leakage detection of waterproof curtain for soft soil foundation pit.

Key words: soft soil foundation pit, waterproof curtain, leakage detection, resistivity, GPR

中图分类号: 

  • P631.3

[1] 张玉成, 杨光华, 钟志辉, 等. 软土基坑设计若干关键问题探讨及基坑设计实例应用分析[J]. 岩石力学与工程学报, 2012, 31(11):2334-2343. Zhang Yucheng, Yang Guanghua, Zhong Zhihui, et al. Discussion on Some Key Problems in Soft Soil Foundation Pit Design and Application Analysis of Design Examples[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11):2334-2343.

[2] 唐军. 临海复杂砂层的基坑支护隔水帷幕设计与实践[J]. 岩土工程学报, 2012, 33(增刊):548-551. Tang Jun. Design and Construction of Water-Sealing Curtain in Deep Excavations in Sand Layer Adjacent to Sea[J]. Chinese Journal of Geotechnical Engineering, 2012, 33(Sup.):548-551.

[3] 杨光华. 广东深基坑支护工程的发展及新挑战[J]. 岩石力学与工程学报, 2012, 31(11):2276-2284. Yang Guanghua. Development and New Challenges of Deep Excavation Supporting Engineering in Guangdong Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11):2276-2284.

[4] 尹盛斌, 丁红岩. 软土基坑开挖引起的坑外地表沉降预测数值分析[J]. 岩土力学, 2012, 33(4):1210-1216. Yin Shengbin, Ding Hongyan. Numerical Analysis of Estimation of Ground Surface Settlement Outside Pit Induced by Soft-Soil Excavation[J]. Rock and Soil Mechanics, 2012, 33(4):1210-1216.

[5] 卫凌云, 秦胜伍, 陈慧娥. 基坑开挖对单桩及群桩回弹位移的影响分析[J]. 吉林大学学报(地球科学版),2014, 44(2):584-590. Wei Lingyun, Qin Shengwu, Chen Huie. Analysis on Rebounding Displacement of Single Pile and Pile Group Under Excavation[J]. Journal of Jilin University (Earth Science Edition), 2014,44(2):584-590.

[6] 刘爱娟, 李整建, 刘太平. 基坑止水帷幕优化设计探讨[J]. 工程勘察, 2011(12):20-24. Liu Aijuan, Li Zhengjian, Liu Taiping. Discussion on Optimization Design of Water Sealing Curtain in Foundation Pit[J]. Geotechnical Investigation & Surveying, 2011(12):20-24.

[7] 张云. 搅拌桩止水帷幕的应用研究[D]. 北京:中国地质大学, 2010. Zhang Yun. Mix Spray Application of Waterproof Curtain Piles[D]. Beijing:China University of Geoscience, 2010.

[8] 吴长盛. 北大港水库堤坝裂缝检测与评定技术研究[J]. 水利水电技术, 2001, 32(5):61-63. Wu Changsheng. Technology Study of Dam Crack Detection and Evaluation in Beidagang Reservoir[J]. Water Resources and Hydropower Engineering, 2001, 32(5):61-63.

[9] 郭铁柱. 高密度电法在崇青水库坝基渗漏勘查中的应用[J]. 北京水利, 2001(2):39-40. Guo Tiezhu. Application of High-Density Resistance Method in Dam Foundation of Chongqing Reservoir Seepage Exploration[J]. Beijing Water Resources, 2001(2):39-40.

[10] 朱德兵, 任青文. 垂直防渗墙横剖面电阻率数值与物理模拟研究[J]. 河海大学学报(自然科学版), 2004, 32(4):410-414. Zhu Debing, Ren Qingwen. Numerical and Physical Simulation of Resistivity of Transverse Profiles of Vertical Cut-off Walls[J]. Journal of Hohai University (Natural Sciences), 2004, 32(4):410-414.

[11] 王士鹏. 高密度电法在水文地质和工程地质中的应用[J]. 水文地质工程地质, 2000, 27(1):52-55. Wang Shipeng. Application of High-Density Electrical Method in Hydrogeology and Engineering Geology[J]. Hydrogeology and Engineering Geology, 2000, 27(1):52-55.

[12] 王传雷, 董浩斌, 刘占永. 物探技术在监测堤坝隐患上的应用[J]. 物探与化探, 2001, 25(4):294-299. Wang Chuanlei, Dong Haobin, Liu Zhanyong. An Investigation into Monitoring and Forewarning Technique for Dyke Ridden Trouble Under Condition of High Water Level[J]. Geophysical & Geochemical Exploration, 2001, 25(4):294-299.

[13] 高镇. 软土地区基坑隔水帷幕渗漏隐患地球物理检测技术研究[D]. 青岛:中国海洋大学, 2013. Gao Zhen. Geophysical Detection Technology Research of Waterproof Curtain Leakage Hidden Trouble of Foundation Pit in Soft Soil Area[D]. Qingdao:Ocean University of China, 2013.

[1] 梁文婧, 冯晅, 刘财, 恩和得力海, 张明贺, 梁帅帅. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报(地球科学版), 2018, 48(2): 483-490.
[2] 冯晅, 梁帅帅, 恩和得力海, 张明贺, 董泽君, 周皓秋, 齐嘉慧, 赵玮昌. 全极化探地雷达地下管道分类识别技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 364-372.
[3] 王文天, 刘四新, 鹿琪, 李宏卿, 傅磊. 基于改进残差法的定向钻孔雷达三维成像算法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 402-410.
[4] 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533.
[5] 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864.
[6] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[7] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[8] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[9] 高建申, 孙建孟, 姜艳娇, 崔利凯. 侧向测井电极系结构影响分析及阵列化测量新方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1874-1883.
[10] 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836.
[11] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[12] 杨海燕,邓居智,汤洪志,林云. 全空间瞬变电磁法资料解释方法中的平移算法[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1012-1017.
[13] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035-2043.
[14] 李晓辉, 周彦球, 缑艳红, 王玉华, 姜宝彦. 电成像测井孔隙度分析技术及其在碳酸盐岩储层产能预测中的应用[J]. J4, 2012, 42(4): 928-934.
[15] 谭锋奇, 李洪奇, 孙中春, 欧阳敏, 韩述一. 构造电阻率差比值法识别火山岩裂缝地层天然气层[J]. J4, 2012, 42(4): 1199-1206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!