吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1153-1167.doi: 10.13278/j.cnki.jjuese.201604202

• 地质工程与环境工程 • 上一篇    下一篇

金沙江上游快速隆升河段复杂结构岩体灾变特征与机理

陈剑平1, 李会中2   

  1. 1. 吉林大学建设工程学院, 长春 130026;
    2. 长江三峡勘测研究院有限公司(武汉), 武汉 430010
  • 收稿日期:2016-02-02 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:陈剑平(1957),男,教授,博士生导师,主要从事工程地质方面的研究,E-mail:chenjpwq@126.com
  • 基金资助:

    国家自然科学基金重点项目(41330636)

Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass Along the Rapidly Uplift Section at the Upstream of Jinsha River

Chen Jianping1, Li Huizhong2   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China;
    2. Survey Planning and Design of the Yangtze River Co., Ltd., Wuhan 430010, China
  • Received:2016-02-02 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by Major Project of National Natural Science Foundation of China(41330636)

摘要:

横断山脉北麓金沙江上游河段沟壑纵横,水能资源丰富。中、晚更新世以来,快速隆升的新构造活动导致该河段复杂结构岩体在重力场的持续作用下灾变频繁。笔者阐述了该河段高地应力的基础地质背景与金沙江板块构造结合带蛇绿岩套的复杂结构岩体基本特征,提出了快速隆升河段的基本认知,建议将≥5 mm/a作为快速隆升河段的界限值;列举了21.4 km河段内不同时期、不同类型4处大规模堵江事件的证据和基本特征,阐述了其与快速隆升之间的关系;运用地质过程机制法分析了4个堵江体的致灾机理,指出早期堵江残体为未来人类工程活动的潜灾体。

关键词: 快速隆升河段, 复杂结构岩体, 堵江残体, 潜灾体, 金沙江上游

Abstract:

Ravines & gullies crisscrossed that makes hydropower resources abundant at the up reaches of Jinsha River, north slope of Hengduan Mountain. Since the Middle and the Late Pleistocene, rapidly uplift neotectonic activity gives rise to gravitational deformation and disasters occurrence due to the complexed structural rock mass in this river section. Basic geological background due to high geostress and the basic features of the complicated structural rock mass for ophiolite suite developed in Jinsha River plate tectonics joint belt of this river section were stated. A new concept of rapid uplift river section is put forwarded, annul uplift value up to ≥5 mm/a is recommended to be the threshold of rapid uplift river section. Evidences and basic features related to four events of huge landslide dams originated from defferent time and different scale were enumerated, the relationship between the rapid uplift river section and four landslide dams was expressed. Genetic mechanism of four huge landslide dams developed in the reach of 21.4 km river section was disccussed and analyzed based on geological process mechanism method, and earlier landslide dam residual might be a potential harzadous for the future human activities is pointed out.

Key words: rapidly uplift river section, complicated structural rock mass, landslide dam residual, potential harzadous, upstream Jinsha River

中图分类号: 

  • P642.22

[1] 张镱锂,李炳元,郑度.论青藏高原范围与面积[J].地理研究,2002,21(1):1-8. Zhang Yili, Li Bingyuan, Zheng du, A Discussion on the Boundary and Area of the Tibetan Plateau in China[J].Geographical Research,2002,21(1):1-8.

[2] 刘天仇,其美多吉.青藏高原国际河流区水资源特征开发利用前景[J].地理学报,1999,54(增刊):11-20. Liu Tianchou, Qimeiduoji. Characteristics, Development and Utilization Prospects of Water Resources of the International River Area in Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 1999,54(Sup.):11-20.

[3] 成都理工大学.人地谐和:张倬元教授八十华诞贺文集[M]. 北京:地质出版社,2006. Chengdu University of Science and Technology. Harmony Between Human Beings and Nature: Symposium Professor Zhang Zhuoyuan all Eightieth Birthday Festschrift[M]. Beijing:Geological Publishing House, 2006.

[4] 边千韬.青藏高原隆升机制初探:青藏高原与全球变化研讨会论文集[M].北京:中国气象出版社, 1994:235-240. Bian Qiantao. Preliminary Study on the Uplifting Mechanisms of Qinghai-Tibet Plateau, Symposium of Qinghai-Tibet Plateau and Global Climate Changes[M].Beijing:China Meterological Press, 1994:235-240.

[5] 宋世战,谷祖纲,胡尚斌,等.用古脊椎动物化石中氟含量测定地质年代[J].甘肃地质学报,1994,3(1):96-100. Song Shizhan, Gu Zugang, Hu Shangbin, et al. Geological Dating by the Fluorine Contents the Fossils of Ancient Vertebrate Animal Bones and Teeth[J]. Acta Geologica Gansu, 1994, 3(1):96-100.

[6] 江万,莫宣学,赵崇贺,等.矿物裂变径迹年龄与青藏高原隆升速率研究[J].地质力学学报,1998,4(1):13-18. Jiang Wan, Mo Xuanxue, Zhao Chonghe, et al. Mineral Fission-Track Dates and Research on Uplifting Velocity of Qinghai-Xizang Plateau[J]. Journal of Geomechanics, 1998,4(1):13-18.

[7] Coleman M, Hodges K, Evidence for Tibetan Plateau Uplift Before 14 Ma ago from a New Minimumage for East-West Extension[J]. Nature, 1995, 374:45-92.

[8] 伍永秋,崔之久,葛道凯,等.青藏高原何时隆升到现代的高度:以昆仑山垭口地区为例[J].地理科学,1999,19(6):481-484. Wu Yongqiu , Cui Zhijiu, Ge Daokai, et al. When the Qinghai-Xizang Plateau Uplift to Present Elevation[J].Scientia Geographica Sinica, 1999,19(6):481-484.

[9] 张青松,李炳元,朱立平.青藏高原北部第四纪环境的新认识[J].地理学报,1994,49(4):289-297. Zhang Qingsong, Li Bingyuan, Zhu Liping. New Reconitions of Quaternary Environment in the Northwest Tibetan Plateau[J]. Acta Geographica Sinica, 1994,49(4): 289-297.

[10] 张青松,周耀飞,陆祥顺,等.现代青藏高原上升速度问题[J].科学通报,1991 (7):529-531. Zhang Qingsong, Zhou Yaofei, Lu Xiangshun,et al. The Problems of Present Uplifting Velocity of Tibet-Qinghai Plateau[J]. Chinese Science Bulletin, 1991 (7):529-531.

[11] 施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报, 1999, 54(1): 10-20. Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of Qinghai-Xizang (Tibetan) Plateau and East Asia Environmental Change During Late Genozoic[J]. Acta Geographica Sinica, 1999, 54(1):10-20.

[12] 施雅风,李吉均,李炳元.青藏高原晚新生代隆升与环境变化[M]. 广州:广东科技出版社,1998. Shi Yafeng, Li Jijun, Li Bingyuan. Uplift of Qinghai-Tibet Plateau and Environmental Change During Late Genozoic[M]. Guangzhou: Guangdong Science & Technology Press , 1998.

[13] 郝明.基于精密水准数据的青藏高原东缘现今地壳垂直运动与典型地震同震及震后垂直形变研究[D].北京:中国地震局地质研究所,2012. Hao Ming. Present Crustal Vertical Movement of Eastern Tibetan Plateau and Coseismic and Post Seismic Vertical Deformation of Two Typical Earthquakes[D]. Beijing:Institute of Geology, China Earthquake Administration,2012.

[14] 肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质论评,1998,44(4):372-381. Xiao Xuchang, Wang Jun. A Brief Review of Tectonic Evolution and Uplift of the Qinghai-Tibet Plateau[J]. Geological Review, 1998,44(4):372-381.

[15] 陈俊勇,刘允诺,张骥,等.珠穆朗玛峰地区的地壳运动、地壳厚度、张性冰川的探讨[J].测绘学报,1994,23(3):178-183. Chen Junyong, Liu Yunnuo, Zhang Ji, et al. The Determination for the Height of Qomolangma Feng and the Crustal Movement in Its Adjacent Area[J].Acta Geodaetica et Cartographica Sinica, 1994,23(3):178-183.

[16] 乔彦超,赵桂萍,石耀霖,等.青藏高原隆升速率对冻土层形成影响的数值模拟[J].地质学报,2010,84(6):901-908. Qiao Yanchao, Zhao Guiping, Shi Yaolin, et al. Numerical Simulation of Influence of the Qinghai-Tibet Plateau Rising Rates on Formation of Permafrost[J]. Acta Geologica Sinica, 2010,84(6):901-908.

[17] 吴珍汉,叶培盛,胡道功,等.青藏高原腹地的地壳变形与构造地貌形成演化过程[J].北京:地质出版社,2003. Wu Zhenhan, Ye Peisheng,Hu Daogong, et al. Hinterland of Qinghai-Tibet Plateau Crust Deformation and Tectonic Geomorphic Evolution Process[J]. Beijing:Geological Publishing House, 2003.

[18] 陈晓清,崔鹏,程尊兰,等.5·12汶川地震堰塞湖危险性应急评估[J].地学前缘,2008,15(4):244-249. Chen Xiaoqing, Cui Peng, Cheng Zunlan, et al. Energency Risk Assessment of Dammed Lakes Caused by Wenchuan Earthquake on May12, 2008[J]. Earth Science Frontiers, 2008,15(4):244-249.

[19] 德钦县志编纂委员会.德钦县志[M].昆明:云南人民出版社,2011. Deqin County Annals Compilation Committee.Deqin County Annals[M]. Kunming:Yunnan People's Publishing House, 2011.

[20] 郭小花,卢玉东,李小林,等.黄河上游德恒隆—锁子滑坡堵塞黄河事件[J].吉林大学学报(地球科学版),2015,45(6):1789-1797. Guo Xiaohua, Lu Yudong, Li Xiaolin, et al, Event of Boick up of Upper Yellow River by Dehenglong-Suozi Landslides[J]. Journal of Jilin University(Earth Science Edition) 2015, 45(6):1789-1797.

[1] 王孔伟, 路永强, 聂进, 滕明明, 王宵亮. 三峡库区仙女山和九畹溪断裂带水库地震变化规律[J]. 吉林大学学报(地球科学版), 2021, 51(2): 624-637.
[2] 安玉科, 樊江, 马胜午, 马建全, 高娟, 毛立军. 堆积阶地古老滑坡识别方法及其在线状工程地质勘察中的应用[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1787-1794.
[3] 刘杰, 李丽华, 林跃水, 陈伟, 李晓明. 堰塞坝漫顶溃决过程溃口纵向下切与溯源[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1795-1803.
[4] 蒋先刚, 吴雷. 不同初始含水量条件下的堰塞坝溃决机理[J]. 吉林大学学报(地球科学版), 2020, 50(1): 185-193.
[5] 林剑, 张奇飞, 龙万学, 张红伟. 基于预警隶属度函数多模型融合的滑坡预警方法[J]. 吉林大学学报(地球科学版), 2019, 49(2): 477-484.
[6] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[7] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[8] 赵金童, 牛瑞卿, 姚琦, 武雪玲. 雷达数据辅助下的滑坡易发性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1182-1191.
[9] 谭福林, 胡新丽, 张玉明, 何春灿, 章涵. 考虑渐进破坏过程的滑坡推力计算方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 193-202.
[10] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212.
[11] 洪勇, 车效文, 郑孝玉, 刘鹏, 周蓉. 陕西泾阳南塬滑坡干湿黄土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1207-1218.
[12] 张延军, 张通, 殷仁朝, 郑杰, 刘彤, 谢洋洋. 基于2 m测温法的地热异常区探测及地温预测[J]. 吉林大学学报(地球科学版), 2017, 47(1): 189-196.
[13] 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178.
[14] 刘晓波, 刘少峰, 林成发. 冀西北赤城-宣化盆地土城子组沉积特征及盆缘构造分析[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1297-1311.
[15] 杜芳鹏, 王建强, 牛军强, 谭富荣, 杨创, 闫明明. 羌塘地块东南部上三叠统巴贡组软沉积变形特征及其意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 661-670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘福春,程日辉,解启来,胡望水,汤济广,李忠博,杨秀辉,徐浩,周隶华. 松辽盆地梨树断陷页岩气资源潜力评价[J]. 吉林大学学报(地球科学版), 2014, 44(3): 762 -773 .
[2] 郭瑞清,秦切,张晓帆,(孙宝生),郭寅. 新疆库鲁克塔格阔克塔格西碱性岩年代学、岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 457 -468 .
[3] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[4] 李宪洲,刘 研,刘丽华,宁维坤,范 海. 高岭土/肼插层材料的制备与表征[J]. J4, 2006, 36(04): 659 -662 .
[5] 卢双舫,李吉君,薛海涛,徐立恒. 油成甲烷碳同位素分馏的化学动力学及其初步应用[J]. J4, 2006, 36(05): 825 -829 .
[6] 于 平,李瑞磊,付 雷,郝 雪,张向军,廉国芬. 松辽盆地滨北地区区域构造特征及意义--地震长剖面给出的证据[J]. J4, 2005, 35(05): 611 -615 .
[7] 张原庆, 宋炳忠, 王玉福, 张宁. 鲁西铜石岩体金成矿规律和成矿预测[J]. J4, 2010, 40(6): 1287 -1294 .
[8] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790 -0795 .
[9] 丁志宏,冯平,毛慧慧. 考虑径流年内分布影响的丰枯划分方法及其应用[J]. J4, 2009, 39(2): 276 -0280 .
[10] 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312 -0316 .