吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 185-193.doi: 10.13278/j.cnki.jjuese.20190049
• 地质工程与环境工程 • 上一篇
蒋先刚1,2, 吴雷1
Jiang Xiangang1,2, Wu Lei1
摘要: 在影响堰塞坝溃决的众多因素中,初始含水量影响堰塞坝的溃决机理仍不清楚。通过开展不同初始含水量条件下的水槽试验,详细探究了初始含水量对溃决过程的影响规律。结果表明:不同初始含水量条件下的溃决过程均具有3个典型阶段,分别是牵引侵蚀过程、溯源侵蚀过程和水沙运动再平衡过程;峰值流量随初始含水量的增大而增大,而溃决历时和残留坝体高度随初始含水量的增大而减小;随初始含水量的增大,溯源侵蚀作用逐渐减弱,牵引侵蚀作用增强;随初始含水量的增大,溃口展宽率降低,侵蚀率增大;初始含水量小于7.8%时,平均侵蚀率增长缓慢,大于7.8%后,平均侵蚀率增长迅速,且10.3%初始含水量对应的平均侵蚀率约为7.8%初始含水量的2倍;溃口宽深比在溃决的前两阶段随初始含水量的增大而减小;溃决结束后的宽深比随含水量的增大呈先趋近于1.00、后远离1.00的演变。
中图分类号:
[1] Costa J E, Schuster R L. Formation and Failure of Natural Dams[J]. Geological Society of America Bulletin, 1988, 100(7):1054-1068. [2] Casagli N, Ermini L, Rosati G. Determining Grain Size Distribution of the Material Composing Landslide Dams in the Northern Apennines:Sampling and Processing Methods[J]. Engineering Geology, 2003, 69(1):83-97. [3] Korup O. Recent Research on Landslide Dams:A Literature Review with Special Attention to New Zealand[J]. Progress in Physical Geography, 2002, 26(2):206-235. [4] Miller B G N,Cruden D M. The Eureka River Landslide and Dam, Peace River Lowlands, Alberta[J]. Canadian Geotechnical Journal, 2002, 39(4):863-878. [5] Dai F C, Lee C F, Deng J H, et al.The 1786 Earthquake-Triggered Landslide Dam and Subsequent Dam-Break Flood on the Dadu River, Southwestern China:Reply[J]. Geomorphology, 2005, 65(3):205-221. [6] Costa J E. The Formation and Failure of Natural Dams[J]. Geological Society of America Bulletin, 1988, 100(7):1054-1068. [7] Morris M, Hanson G, Hassan M. Improving the Accuracy of Breach Modelling:Why are We not Progressing Faster?[J]. Journal of Flood Risk Management, 2008, 1(3):150-161. [8] Cao Z, Yue Z, Pender G. Landslide Dam Failure and Flood Hydraulics:Part I:Experimental Investigation[J]. Nature Hazards, 2011, 59(2):1003-1019. [9] Frank P J. Hydraulics of Spatial Dike Breaches[D]. Zurich:ETH Zurich, 2016. [10] Walder J S, Iverson R M, Godt J W, et al. Controls on the Breach Geometry and Flood Hydrograph During Overtopping of Noncohesive Earthen Dams[J]. Water Resources Research, 2015, 51(8):6701-6724. [11] Rifai I,Erpicum S, Archambeau P, et al. Overtopping Induced Failure of Noncohesive, Homogeneous Fluvial Dikes[J]. Water Resources Research,2017, 53(4):3373-3386 [12] Coleman S E, Andrews D P, Webby M G. Overtopping Breaching of Noncohesive Homogeneous Embankments[J]. Journal of Hydraulic Engineering, 2004, 128(9):829-838. [13] Zhu Y H, Visser P J,Vrijling J K, et al. Experimental Investigation on Breaching of Embankments[J]. Science in China:Series E:Technological Sciences, 2011, 54(1):148-155. [14] Schmocker L, Frank P J, Hager W H. Overtopping Dike-Dreach:Effect of Grain Size Distribution[J]. Journal of Hydraulic Research, 2014, 52(4):559-564. [15] Xiangang J, Jiahua H, Yunwei W, et al.The Influence of Materials on the Breaching Process of Natural Dams[J]. Landslides, 2018, 15(2):243-255. [16] 付建康,罗刚,胡卸文.滑坡堰塞坝越顶溢流破坏的物理模型实验[J].吉林大学学报(地球科学版),2018,48(1):203-212. Fu Jiankang, Luo Gang, Hu Xiewen. Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam[J]. Journal of Jilin University(Earth Science Edition), 2018,48(1):203-212. [17] Al-Riffai M. Experimental Study of Breach Mechanics in Overtopped Noncohesive Earthen Embankments[D]. Ottawa:Ottawa University, 2014. [18] Jiang X, Wei Y, Wu L, et al.Laboratory Experiments on Failure Characteristics of Non-Cohesive Sediment Natural Dam in Progressive Failure Mode[J]. Environmental Earth Sciences, 2019, 78(17):538. [19] Winterwerp J C, van Kesteren W G M. Introduction to the Physics of Cohesive Sediment in the Marine Environment[M]. Amsterdam:Elsevier, 2004. [20] 四川省水利水电厅.四川省中小流域暴雨洪水计算手册[M].成都:四川省水利水电厅水文总站出版社, 1984. Water Resources Department of Sichuan Province. Storm Flood Computation Handbook of Small Watershed in Sichuan Province[M]. Chengdu:Books Press of Hydrological Terminus in Sichuan Province Water Resources and Power Authority,1984. [21] van Emelen S, Zech Y, Soares-Frazao S. Impact of Sediment Rransport Formulations on Breaching Modelling[J]. Journal of Hydraulic Research, 2015, 53(1):60-72. [22] 陈海明, 班凤其, 刘小伟. 非饱和土抗剪强度指标c、Ф值与含水量ω的关系[J]. 合肥工业大学学报(自然科学版), 2006,29(6):736-738. Chen Haiming, Ban Fengqi, Liu Xiaowei. Relationship Between Water Content ω and Unsaturated Soil Shear Strength Indices c and Ф[J]. Journal of Hefei University of Technology (Natural Science), 2006,29(6):736-738. [23] 周春梅, 赵子鹏, 鲁阳. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报, 2016,36(2):213-219. Zhou Chunmei, Zhao Zipeng, Lu Yang. The Influence of Water Content on Strength and Deformation Parameters of Sliding Zone and Slope Stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016,36(2):213-219. [24] Cividini A, Gioda G. Finite Element Approach to the Erosion and Transport of Fine Particles in Granular Soils[J]. International Journal Geomechanics, 2004, 3(4):191-198. [25] Papamichos E, Vardoulakis I. Sand Erosion with a Porosity Diffusion Law[J]. Computers and Geotechnics, 2005, 32(1):47-58. [26] 唐建一,徐东升,刘华北.含石量对土石混合体剪切特性的影响[J].岩土力学,2018,39(1):93-102. Tang Jianyi, Xu Dongsheng, Liu Huabei. Effect of Gravel Content on Shear Behavior of Sand-Gravel Mixture[J]. Rock and Soil Mechanics, 2018,39(1):93-102. [27] Huang C H, Laflen J M, Bradford J M. Evaluation of the Detachment-Transport Coupling Concept in the WEPP Rill Erosion Equation[J]. Soil Science Society of America Journal, 1996, 60(3):734. [28] Annandale G W. Scour Technology:Mechanics and Engineering Practice[M]. New York:McGraw-Hill, 2006:430. |
[1] | 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212. |
[2] | 郑光,许强,林峰,巨能攀,邓茂林,汪新芳. 2012年6·29贵州岑巩龙家坡滑坡灾害的基本特征与成因机理:一个由侧向剪切扰动诱发大型滑坡的典型案例[J]. 吉林大学学报(地球科学版), 2014, 44(3): 932-945. |
|