吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1260-1267.doi: 10.13278/j.cnki.jjuese.201604304

• 地球探测与信息技术 • 上一篇    

Analytic Solution to the MT Responses of a Two-Segment Model with Axially Anisotropic Conductivity Structures Overlying a Perfect Insulator

Qin Linjiang1,2, Yang Changfu3   

  1. 1. Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China;
    2. Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China;
    3. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
  • 收稿日期:2016-05-12 出版日期:2016-07-26 发布日期:2016-07-26
  • 作者简介:Qin Linjiang (1984[CD1]), male, PhD, specialized in the forward and inversion of the electromagnetic induction in the Earth, E-mail: qinlinjiang@126.com
  • 基金资助:

    Supported by General Program of the National Natural Science Foundation of China (40774035)

Analytic Solution to the MT Responses of a Two-Segment Model with Axially Anisotropic Conductivity Structures Overlying a Perfect Insulator

Qin Linjiang1,2, Yang Changfu3   

  1. 1. Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China;
    2. Key Laboratory of Submarine Geosciences, State Oceanic Administration, Hangzhou 310012, China;
    3. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
  • Received:2016-05-12 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by General Program of the National Natural Science Foundation of China (40774035)

摘要:

The analytic solution of the magnetotelluric fields for an idealized 2-D model which is composed of two segments with diagonal anisotropy underlain by a perfect insulator basement is considered using a quasi-static analytic approach. The analytic magnetotelluric responses for a particular model are presented. The resulting analytic solution could be used to check the numerical solutions given by numerical algorithms before more complex situations are investigated.

关键词: anisotropy, magnetotellurics, analytic solution, two-dimensional

Abstract:

The analytic solution of the magnetotelluric fields for an idealized 2-D model which is composed of two segments with diagonal anisotropy underlain by a perfect insulator basement is considered using a quasi-static analytic approach. The analytic magnetotelluric responses for a particular model are presented. The resulting analytic solution could be used to check the numerical solutions given by numerical algorithms before more complex situations are investigated.

Key words: anisotropy, magnetotellurics, analytic solution, two-dimensional

中图分类号: 

  • P631.3

[1] Shearer P, Orcutt J. Anisotropy in the Oceanic Lithosphere: Theory and Observations from the Ngendei Seismic Refraction Experiment in the South-West Pacific[J]. Geophysical Journal of the Royal Astronomical Society, 1985, 80(2): 493-526.

[2] Negi J, Saraf P. Anisotropy in Geoelectromagnetism[M]. Amsterdam: Elsevier, 1989.

[3] Kellett R, Mareschal M, Kurtz R. A Model of Lower Crustal Electrical Anisotropy for the Pontiac Subpro-vince of the Canadian Shield[J]. Geophysical Journal International, 1992, 111(1): 141-150.

[4] Klein J. Saturation Effects on Electrical Anisotropy[J]. Log Analyst, 1996, 37: 47-49.

[5] Eisel M, Haak V. Macro-Anisotropy of the Electrical Conductivity of the Crust: a Magnetotelluric Study of the German Continental Deep Drilling Site (KTB)[J]. Geophysical Journal International, 1999, 136(1): 109-122.

[6] Eaton D W, Jones A G, Ferguson I J. Lithospheric Anisotropy Structure Inferred from Collocated Teleseismic and Magnetotelluric Observations: Great Slave Lake Shear Zone, Northern Canada[J]. Geophysical Research Letters, 2004, 31(19): L19614.

[7] Wannamaker P E. Anisotropy Versus Heterogeneity in Continental Solid Earth Electromagnetic Studies: Fundamental Response Characteristics and Implications for Physicochemical State[J]. Surveys in Geophysics, 2005, 26(6): 733-765.

[8] Clavaud J B. Intrinsic Electrical Anisotropy of Shale: The Effect of Compaction[J]. Petrophysics, 2008, 49(3): 243-260.

[9] Ben F, Liu Y, Huang W, et al. MCSEM Response for Anisotropic Media in Shallow Water[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 594-602.

[10] Srnka L J, Lu X, Burtz O M. Method for Determining Earth Vertical Electrical Anisotropy in Marine Electromagnetic Surveys: U S, Patent 7 894 989[P]. 2011-02-22.

[11] Brown V, Hoversten M, Key K, et al. Resolution of reservoir Scale Electrical Anisotropy from Marine CSEM Data[J]. Geophysics, 2012, 77(2): E147-E158.

[12] Everett M E, Constable S. Electric Dipole Fields over an Anisotropic Seafloor: Theory and Application to the Structure of 40 Ma Pacific Ocean Lithosphere[J]. Geophysical Journal International, 1999, 136(1): 41-56.

[13] Rauen A, Lastovickova M. Investigation of Electrical Anisotropy in the Deep Borehole KTB[J]. Surveys in Geophysics, 1995, 16(1): 37-46.

[14] Kurtz R, Craven J, Niblett E, et al. The Conductivity of the Crust and Mantle Beneath the Kapuskasing Uplift: Electrical Anisotropy in the Upper Mantle[J]. Geophysical Journal International, 1993, 113(2): 483-498.

[15] Bahr K, Duba A. Is the Asthenosphere Electrically Anisotropic?[J]. Earth and Planetary Science Letters, 2000, 178(1): 87-95.

[16] Bahr K, Bantin M, Jantos C, et al. Electrical Anisotropy from Electromagnetic Array Data: Implications for the Conduction Mechanism and for Distortion at Long Periods[J]. Physics of the Earth and Planetary Interiors, 2000, 119(3): 237-257.

[17] Bahr K. Electrical Anisotropy and Conductivity Distribution Functions of Fractal Random Networks and of the Crust: The Scale Effect of Connectivity[J]. Geophysical Journal International, 1997, 130(3): 649-660.

[18] Cull J. Magnetotelluric Soundings over a Precambrian Contact in Australia[J]. Geophysical Journal International, 1985, 80(3): 661-675.

[19] Rasmussen T. Magnetotellurics in Southwestern Sweden: Evidence for Electrical Anisotropy in the Lower Crust?[J]. Journal of Geophysical Research: Solid Earth (1978-2012), 1988, 93(B7): 7897-7907.

[20] Tikhonov A N. The Determination of the Electrical Properties of the Deep Layers of the Earth'S Crust[J]. Dokl Acad Nauk SSR, 1950, 73: 295-297 (in Russian).

[21] Tikhonov A N. On Determining Electrical Characte-ristics of the Deep Layers of the Earth's Crust[M]// Vozoff K. Magnetotelluric Methods. Tulsa: Society of Exploration Geophysicists, 1986: 2-3.

[22] Cagniard L. Basic Theory of the MT Methods of Geophysical Propecting[J]. Geophysics, 1953, 18(3): 605-635.

[23] Reddy I K, Rankin D. Magnetotelluric Response of Laterally Inhomogeneous and Anisotropic Media[J]. Geophysics, 1975, 40(6): 1035-1045.

[24] Pek J, Verner T. Finite-Difference Modelling of Magnetotelluric Fields in Two-Dimensional Anisotropic Media[J]. Geophysical Journal International, 1997, 128: 505-521.

[25] Li Y. Numerische Modellierungen von Elektromagnetischen Feldern in 2-und 3-Dimensionalen Anisotropen Leitf higkeitsstrukturen der Erde Nach der Methode der Finiten Elemente[M]. Gttingen: Cuvillier, 2000.

[26] Li Y G. A finite-Element Algorithm for Electromagnetic Induction in Two-Dimensional Anisotropic Conductivity Structures[J]. Geophysical Journal International, 2002, 148(3): 389-401.

[27] Yang C. MT Numerical Simulation of Symmetrically 2D Anisotropic Media Based on the Finite Element Method(in Chinese)[J]. Northwestern Seismological Journal, 1997, 19(2): 27-33.

[28] Osella A M, Martinelli P. Magnetotelluric Response of Anisotropic 2-D Structures[J]. Geophysical Journal International, 1993, 115(3): 819-828.

[29] Saraf P, Negi J. On Multifrequency Magneto Telluric Sounding over the Himalayan Type Colliding Plate Boundaries[J]. Geophysical Journal of the Royal Astronomical Society, 1983, 74(3): 809-817.

[30] Weaver J T, Lequang B V, Fischer G. A Comparison of Analytic and Numerical Results for a Two-Dimensional Control Model in Electromagnetic Induction: 1: B-Polarization Calculations[J]. Geophysical Journal of the Royal Astronomical Society, 1985, 82(2): 263-277.

[31] Weaver J T, Lequang B V, Fischer G. A Comparison of Analytic and Numerical Results for a Two-Dimensional Control Model in Electromagnetic Induction: 1: E-Polarization Calculations[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 87(3): 917-948.

[32] Weaver J T. Mathematical Methods for Geo-Electromagnetic Induction[M]. Taunton: Research Studies Press, 1994.

[33] Qin L,Yang C,Chen K.Quasi-Analytic Solution of 2-D Magnetotelluric Fields on an Axially Anisotropic Infinite Fault[J]. Geophysical Journal International, 2013, 192(1): 67-74.

[34] O'brien D P, Morrison H F. Electromagnetic Fields in an N-Layered Anisotropic Half-Space[J]. Geophysics, 1967, XXXII(4): 668-677.

[35] Loewenthal D, Landisman M. Theory for Magnetotelluric Observations on the Surface of a Layered Anisotropic Half Space[J]. Geophysical Journal International, 1973, 35(1/2/3): 195-214.

[36] Chetayev D N. The Determination of Anisotropic Coefficient and the Angle of Inclination of Homogeneous Anisotropic Medium, by Measuring the Impedance of Natural Electromagnetic Field[J]. Bull Acad Sci USSR, Geophysics ser, English Transl, 1960: 407-408.

[37] Reddy I K, Rankin D. Magnetotelluric Measurements in Central Alberta[J]. Geophysics, 1971, 36(4): 739-753.

[38] Kong J A. Electromagnetic Fields due to Dipole Antennas over Stratifield Anisotropic Media[J]. Geophysics, 1972, 37(6): 985-996.

[39] Qin L, Yang C. Analytic Magnetotelluric Responses to a Two-Segment Model with Axially Anisotropic Conductivity Structures Overlying a Perfect Conductor[J]. Geophysical Journal International, 2016, 205(3): 1729-1739.

[40] Rankin D. The Magneto-Telluric Effect on a dike[J]. Geophysics, 1962, 27(5): 666-676.

[41] D'erceville I, Kunetz G. The Effect of a Fault on the Earth's Natural Electromagnetic Field[J]. Geophy-sics, 1962, 27(5): 651-665.

[42] Wait J R, Spies K P. Magneto-Telluric Fields for a Segmented Overburden[J]. Journal of Geomagnetism and Geoelectricity, 1974, 26(5): 449-458.

[43] Simpson F, Bahr K. Practical Magnetotellurics[M]. Cambridge: Cambridge University Press, 2005.

[1] 冯凯, 秦策. 大地电磁(MT)自适应有限元各向异性正演[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1887-1896.
[2] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[3] 杨悦, 翁爱华, 张艳辉, 李世文, 李建平, 唐裕. 基于可控源电磁法阻抗信息的有限内存拟牛顿法三维反演[J]. 吉林大学学报(地球科学版), 2019, 49(2): 591-602.
[4] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[5] 吴景鑫, 郭秀军, 贾永刚, 孙翔, 李宁. 天然气水合物开采过程甲烷气泄漏海床基高密度电阻率法监测效果模拟与分析[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1854-1864.
[6] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[7] 王焱, 鹿琪, 刘财, 佘松盛, 刘四新. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2): 491-500.
[8] 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482.
[9] 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260.
[10] 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270.
[11] 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561.
[12] 刘永亮, 李桐林, 朱成, 关振伟, 苏晓波. 基于拟线性积分方程法的三维电磁场数值模拟精度分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1268-1277.
[13] 陈帅, 李桐林, 张镕哲. 考虑激发极化效应的瞬变电磁一维Occam反演[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1278-1285.
[14] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[15] 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[2] 周丽萍, 申向东, 李学斌, 白忠强. 天然浮石粉水泥土力学性质的试验研究[J]. J4, 2009, 39(3): 492 -497 .
[3] 黄玉龙, 王璞珺, 邵锐. 火山碎屑岩的储层物性--以松辽盆地营城组为例[J]. J4, 2010, 40(2): 227 -236 .
[4] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[5] 潘殿琦,张祖培,潘殿彩,陈义民,徐 瑞. 人工冻土纵波波速与温度和含水率的关系[J]. J4, 2006, 36(04): 588 -591 .
[6] 付 哲,周云轩,刘殿伟,刘万崧. 基于特征的面向对象虚拟GIS数据模型设计与原型系统实现[J]. J4, 2006, 36(04): 647 -652 .
[7] 赵玉岩,郝立波,张志立,陆继龙,孙广瑞. 金属矿床勘查找矿信息系统的设计与实现[J]. J4, 2008, 38(1): 161 -0166 .
[8] 王祝文,刘菁华,聂春燕. 阵列声波测井信号的时频局域相关能量分析[J]. J4, 2008, 38(2): 341 -0346 .
[9] 卢焱,李健,白雪山,李永占. 地面磁法在隐伏铁矿勘查中的应用--以河北滦平Ⅱ号铁矿为例[J]. J4, 2008, 38(4): 698 -0702 .
[10] 孙才志,刘玉兰,杨 俊. 下辽河平原地下水生态水位与可持续开发调控研究[J]. J4, 2007, 37(2): 249 -254 .