吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1887-1896.doi: 10.13278/j.cnki.jjuese.20190167

• 地球探测与信息技术 • 上一篇    

大地电磁(MT)自适应有限元各向异性正演

冯凯1, 秦策2   

  1. 1. 中国煤炭科工集团西安研究院有限公司物探仪器研究所, 西安 710077;
    2. 河南理工大学物理与电子信息学院, 河南 焦作 454000
  • 收稿日期:2019-08-22 发布日期:2020-12-11
  • 作者简介:冯凯(1993-),男,助理工程师,硕士,主要从事电磁法勘探方面的研究,E-mail:960136851@qq.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(41904078)

Anisotropy Forward Modeling of Magnetotelluric(MT) Adaptive Finite Element

Feng Kai1, Qin Ce2   

  1. 1. Institute of Geophysical Instruments, Xi'an Research Insititute, China Coal Technology and Engineering Group, Xi'an 710077, China;
    2. Institute of Physics and Electronic Information, Henan University of Technology, Jiaozuo 454000, Henan, China
  • Received:2019-08-22 Published:2020-12-11
  • Supported by:
    Supported by Youth Program of National Natural Science Foundation of China (41904078)

摘要: 电各向异性在自然界中普遍存在,特别是沉积盆地中的部分岩层经过压实变质作用,表现出很强的各向异性导电性,采用基于各向同性模型对实测资料进行正反演解释必然会造成困难甚至结果的错误,只有基于各向异性理论的正反演解释才更为合理准确。本文通过自适应有限元对大地电磁各向异性进行正演计算,分别模拟水平、垂直和倾斜各向异性介质在不同偏转角和主轴电阻率下的响应结果。结果表明:自适应有限元能够在后验误差的控制下得到合理的网格,使计算结果更加接近解析解;在各向异性介质中,大地电磁TE极化模式的视电阻率和阻抗相位与垂直于层面的电阻率无关;二维电各向异性结构中,大地电磁TM极化模式响应结果总是由主轴上的电阻率在y轴方向上的分量所决定。

关键词: 大地电磁, 各向异性, 自适应有限元法, 电性主轴

Abstract: Electrical anisotropy is ubiquitous in nature, especially in some sedimentary basins, where some rock layers underwent compaction and metamorphism,showing a strong anisotropic conductivity,on which a positive and negative interpretation is more reasonable and accurate. The forward calculation of magnetotelluric anisotropy by adaptive finite element method was used to simulate the response of horizontal, vertical and oblique anisotropic media at different deflection angles and spindle resistivity in this study. The results show that the adaptive finite element can obtain a reasonable mesh under the control of the posterior error, and make the calculation result closer to the analytical solution; In anisotropic media, the apparent resistivity and impedance phase of the magnetotelluric TE polarization mode is independent of the resistivity perpendicular to the plane; In a two-dimensional anisotropic structure, the magnetotelluric TM polarization mode response is always determined by the resistivity component on the spindle in the y-axis direction.

Key words: magnetotelluric, anisotropy, adaptive finite element method, electrical spindl

中图分类号: 

  • P631.3
[1] 秦林江. 各向异性介质的MT正反演研究[D]. 杭州:浙江大学, 2013. Qin Linjiang. Research on MT Forward and Inversion for Anisotropic Media[D]. Hangzhou:Zhejiang University, 2013.
[2] 王堃鹏. 基于MPI的海洋可控源电磁法自适应有限元2.5D正演研究[D]. 成都:成都理工大学,2014. Wang Kunpeng. Research on 2.5D Forward Modeling of Adaptive Finite Element Based on MPI for Marine Controllable Source Electromagnetic Method[D]. Chengdu:Chengdu University of Technology, 2014.
[3] 杨淼鑫. 二维各向异性大地电磁场的有限元数值模拟[D]. 成都:成都理工大学,2012. Yang Miaoxin. Finite Element Numerical Simulation of 2D Anisotropic Magnetotelluric Field[D]. Chengdu:Chengdu University of Technology, 2012.
[4] 郑彦丰. 层状各向异性介质大地电磁正反演研究[D]. 西安:长安大学,2017. Zheng Yanfeng. Study on Forward and Inverse Magnetotelluric Inversion of Layered Anisotropic Media[D]. Xi'an:Chang'an University, 2017.
[5] 李志旋. 大地电磁二、三维非结构有限元数值模拟[D]. 合肥:中国科学技术大学,2016. Li Zhixuan. Two-Dimensional and Three-Dimensional Unstructured Finite Element Numerical Simulation of Magnetotelluric Magnetism[D]. Hefei:University of Science and Technology of China, 2016.
[6] 薛帅. 大地电磁各向异性介质正演与NLCG反演研究[D]. 长沙:中南大学,2013. Xue Shuai. Research on Forward Modeling of Magnetotelluric Anisotropic Media and NLCG Inversion[D]. Changsha:Central South University, 2013.
[7] 徐震寰. 电阻率任意各向异性介质大地电磁场三维正演算法研究[D]. 青岛:中国海洋大学,2015. Xu Zhenhuan. Research on 3D Forward Algorithm of Magnetotelluric Field in Anisotropic Medium with Arbitrary Resistivity[D]. Qingdao:Ocean University of China, 2015.
[8] 杨长福. 大地电磁二维对称各向异性介质的有限元数值模拟[J]. 西北地震学报, 1997,19(2):28-34. Yang Changfu. Finite Element Numerical Simulation of Magnetotelluric Two-Dimensional Symmetric Anisotropic Medium[J]. Journal of Northwestern Seismology, 1997,19(2):28-34.
[9] 殷长春, 张博, 刘云鹤. 面向目标自适应三维大地电磁正演模拟[J]. 地球物理学报, 2017,60(1):327-336. Yin Changchun, Zhang Bo, Liu Yunhe. Target-Oriented Adaptive 3D Magnetotelluric Forward Modeling[J]. Chinese Journal of Geophysics, 2017,60(1):327-336.
[10] Li Y, Key K. 2D Marine Controlled-Source Electromagnetic Modeling:Part 1:An Adaptive Finite-Element Algorithm[J]. Geophysics, 2007, 72(2):51-62.
[11] 张博. 基于非结构有限元的频率/时间域航空电磁系统仿真研究[D]. 长春:吉林大学,2017. Zhang Bo. Simulation Study of Frequency/Time Domain Aeronautical Electromagnetic System Based on Unstructured Finite Element[D]. Changchun:Jilin University, 2017.
[12] 张君涛. 大地电磁测深二维各向异性有限元正演模拟[D]. 成都:成都理工大学,2016. Zhang Juntao. Two-Dimensional Anisotropic Finite Element Forward Modeling of Magnetotelluric Sounding[D]. Chengdu:Chengdu University of Technology, 2016.
[13] 张振宇. 龙门山构造带中段大地电磁测深研究[D]. 成都:成都理工大学,2010. Zhang Zhenyu. Study on the Magnetotelluric Sounding in the Middle Section of Longmenshan Tectonic Belt[D]. Chengdu:Chengdu University of Technology, 2010.
[14] Schlumberger. Etude Sur La Prospection Electrique Du Sous-Sol[J]. Phys Earth Planet, 1920,21:43-44.
[15] Keller. Electrical Methods in Geophysical Prospecting[J]. Monographs, 1966,82(2):172-174.
[16] 陈乐寿. 有限元法在大地电磁场正演计算中的应用及改进[J]. 石油物探, 1981, 43(3):243-262. Chen Leshou. Application and Improvement of Finite Element Method in the Forward Calculation of Magnetotelluric Field[J]. Geophysical Prospecting for Petroleum, 1981,43(3):243-262.
[17] Wannamaker P E,Stodt J A, Rijo L. A Stable Finite Element Solution for Two-Dimensional Magnetotelluric Modelling[J]. Geophysical Journal International, 2010, 88(1):277-296.
[18] Key K, Weiss C. Adaptive Finite-Element Modeling Using Unstructured Grids:The 2D Magnetotelluric Example[J]. Geophysics, 2006,71(6):291-299.
[19] Liu C, Ren Z, Tang J, et al. Three-Dimensional Magnetotellurics Modeling Using Edgebased Finite-Element Unstructured Meshes[J]. Applied Geophysics, 2008,5(3):170-180.
[20] Liu Y, Xu Z, Li Y. Adaptive Finite Element Modelling of Three-Dimensional Magnetotelluric Fields in General Anisotropic Media[J]. Journal of Applied Geophysics, 2018,151(2):113-124.
[21] Li Yuguo, Pek J. Adaptive Finite Element Modelling of Two-Dimensional Magnetotelluric Fields in General Anisotropic Media[J]. Geophysical Journal International,2008,175(3):942-954.
[1] 周聪, 汤井田, 原源, 李广, 肖晓, 邓居智. 强干扰区含噪电磁场的时空分布特征[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1870-1886.
[2] 翁望飞, 王德恩, 胡召齐, 朱强, 汪启年, 吴冀明, 唐国强, 张鹏飞. 安徽省休宁—歙县整装勘查区晚侏罗世逆冲推覆构造特征及其与成矿作用关系[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1518-1538.
[3] 张鹏辉, 张小博, 方慧, 王小江, 刘建勋. 地球物理资料揭示的嫩江—八里罕断裂中段深浅构造特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 261-272.
[4] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[5] 洪勃, 李喜安, 王力, 李林翠. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1389-1397.
[6] 肖汉, 王德利. 基于快速匹配法的VTI介质走时计算[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1160-1168.
[7] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[8] 周阳, 苏生瑞, 李鹏, 马洪生, 张晓东. 板裂千枚岩微观结构与力学性质[J]. 吉林大学学报(地球科学版), 2019, 49(2): 504-513.
[9] 杨志龙, 殷长春, 张博, 刘云鹤, 任秀艳, 惠哲剑. 全拖曳式深海直流电阻率法三维任意各向异性正演模拟[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1845-1853.
[10] 薛林福, 祝铭, 李文庆, 刘文玉, 刘正宏, 刘泽宇. 岩浆泡破裂引发地震的模式——以吉林松原2013年地震群为例[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1865-1875.
[11] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[12] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[13] 张聪, 石砥石, 张子亚, 陈科, 苑坤, 乔计花, 彭芳苹. 云南楚雄盆地西部高精度重磁电特征及基底特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 863-871.
[14] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[15] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!