吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1490-1500.doi: 10.13278/j.cnki.jjuese.201605205
袁晓婕1, 郭占荣2, 黄磊1, 章斌2, 马志勇2, 刘洁2
Yuan Xiaojie1, Guo Zhanrong2, Huang Lei1, Zhang Bin2, Ma Zhiyong2, Liu Jie2
摘要:
海底地下水排泄(SGD)是全球水循环的一个组成部分,其输送的溶解物质不仅参与海洋的生物地球化学循环,而且影响近岸海域的生态环境。为了评估胶州湾海底地下水排泄状况,通过建立胶州湾内海水中226Ra的质量平衡模型来计算海底地下水排泄通量。胶州湾海水中226Ra的源主要有河流的输入、沉积物扩散输入和地下水的输入,海水系统在稳定状态下,这几种源应该与湾内海水和湾外海水的混合损失达到平衡。除了将地下水输入作为未知项外,对其他源和汇逐个进行量化,计算得知:2011年9-10月胶州湾的海底地下水排泄通量为7.85×106 m3·d-1;2012年4-5月胶州湾的海底地下水排泄通量为4.72×106 m3·d-1。在此基础上,对地下水输入胶州湾的营养盐进行了评价。
中图分类号:
[1] Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and Pore Water Inputs to the Coastal Zone[J]. Biogeochemistry, 2003, 66:3-33.[2] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011,26(7):685-694. Li Hailong, Wan Li, Jiao Jiujiu. Hot Issues in the Study of Coastal Hydrogeology[J]. Advances in Earth Science, 2011, 26(7):685-694.[3] Moore W S. Large Groundwater Inputs to Coastal Waters Revealed by 226Ra Enrichments[J]. Nature, 1996,380:612-614.[4] Dzhamalov R G, Safronova T I. On Estimating Chemical Discharge into the World Ocean with Groundwater[J]. Water Resources, 2002, 29(6):626-631.[5] Garrison G H, Glenn C R. Measurement of Submarine Groundwater Discharge in Kahana Bay, O'ahu, Hawai'i[J]. Limnology and Oceanography, 2003, 48(2):920-928.[6] Xu B, Burnett W, Dimova N, et al. Hydrodynamics in the Yellow River Estuary via Radium Isotopes:Ecological Perspectives[J]. Continental Shelf Research, 2013,66(9):19-28.[7] Moore W S, Blanton J O, Joye S B. Estimates of Flushing Times, Submarine Groundwater Discharge, and Nutrient Fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research, 2006, 111(C9):141-152.[8] Rahman M M, Lee Y, Kim G, et al. Significance of Submarine Groundwater Discharge in the Coastal Fluxes of Mercury in Hampyeong Bay, Yellow Sea[J]. Chemosphere, 2012, 91(3):320-327.[9] Kim I, Kim G. Submarine Groundwater Discharge as a Main Source of Rare Earth Elements in Coastal Waters[J]. Marine Chemistry, 2014, 160(3):11-17.[10] Rodellas V, Garcia O J, Tovar S A, et al. Submarine Groundwater Discharge as a Source of Nutrients and Trace Metals in a Mediterranean Bay (Palma Beach, Balearic Islands)[J]. Marine Chemistry, 2014, 160(3):56-66.[11] Lee Y W, Kim G, Lim W A, et al. A Relationship Between Submarine Groundwater Borne Nutrients Traced by Ra Isotopes and the Intensity of Dinoflagellate Red-Tides Occurring in the Southern Sea of Korea[J]. Limnology and Oceanography, 2010, 55(1):1-10.[12] Slomp C P, Van C P. Nutrient Inputs to the Coastal Ocean Through Submarine Groundwater Discharge:Controls and Potential Impact[J]. Journal of Hydrology, 2004, 295(1/2/3/4):64-86.[13] Kotwicki L, Grzelak K, Czub M, et al. Submarine Groundwater Discharge to the Baltic Coastal Zone:Impacts on the Meiofaunal Community[J]. Journal of Marine Systems, 2014, 129(2):118-126.[14] Moore W S. The Effect of Submarine Groundwater Dis-charge on the Ocean[J]. The Annual Review of Marine Science, 2010, 2(3):59-88.[15] Beck A J, Rapaglia J P, Cochran J K. Radium Mass-Balance in Jamaica Bay, NY:Evidence for a Substantial Flux of Submarine Groundwater[J]. Marine Chemistry, 2007, 106(3/4):419-441.[16] 袁晓婕,郭占荣,刘洁,等. 咸水环境下沉积物中镭的解吸特点[J].地球学报, 2014, 35(9):582-588. Yuan Xiaojie, Guo Zhanrong, Liu Jie, et al. Characteristics of Radium Desorption from Sediments in the Salt Water Environment[J]. Acta Geoscientica Sinica,2014,35(9):582-588.[17] 郭占荣,黄磊,袁晓婕,等. 用镭同位素评价九龙江河口区的地下水输入[J].水科学进展, 2011,22(1):118-125. Guo Zhanrong, Huang Lei, Yuan Xiaojie, et al. Estimating Submarine Groundwater Discharge to Jiulong River Estuary Using Ra Isotopes[J]. Advances in Water Science, 2011,22(1):118-125.[18] 苏妮. 镭同位素示踪的近岸水体混合和海底地下水排泄[D].上海:华东师范大学, 2013. Su Ni. Tracing Coastal Water Mixing Processes and Submarine Groundwater Discharge by Radium Isotopes[D]. Shanghai:East China Normal University, 2013.[19] 季仲强,胡丹,翁焕新,等. 近岸海域226Ra的时空变化与海底地下水排泄估算[J].地球化学, 2012,41(1):15-22. Ji Zhongqiang, Hu Dan, Weng Huanxin, et al. Temporal and Spatial Variations of 226Ra in Coastal Sea and the Estimation of Submarine Groundwater Discharge (SGD)[J]. Geochimica, 2012,41(1):15-22.[20] 刘花台,郭占荣,高爱国,等. 闽江河口区水体中镭的分布特征及河水与海水的混合速率[J].吉林大学学报(地球科学版), 2013,43(6):1966-1971. Liu Huatai, Guo Zhanrong, Gao Aiguo, et al. Distribution Characteristics of Radium and Determination of Transport Rate in the Min River Estuary Mixing Zone[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6):1966-1971.[21] Garcia-Solsona E, Masque P, Garcia-Orellana J, et al. Estimating Submarine Groundwater Discharge Around Isola La Cura, Northern Venice Lagoon (Italy), by Using the Radium Quartet[J]. Marine Chemistry, 2008,109(3/4):292-306.[22] 王博,郭占荣,袁晓婕,等. 胶州湾地区水体中镭同位素分布特征及其影响因素[J].核技术, 2014,37(3):1-9. Wang Bo, Guo Zhanrong, Yuan Xiaojie, et al. Distribution Characteristics of Radium Isotopes and Their Influence Factors in the Water of Jiaozhou Bay Area[J]. Nuclear Techniques, 2014, 37(3):1-9.[23] Charette M A, Buesseler K O, Andrews J E. Utility of Radium Isotopes for Evaluating the Input and Transport of Groundwater-Derived Nitrogen to a Cape Cod Estuary[J]. American Society of Limnology and Oceanography, 2001,46:465-470.[24] 贾成霞. 基于γ谱分析的胶州湾同位素海洋学研究[D]. 厦门:厦门大学,2003. Jia Chengxia. The Study on Isotopic Oceanography in the Jiaozhou Bay Based on Gamma Spectroscopic Analysis[D]. Xiamen:Xiamen University,2003.[25] 门武. 镭同位素示踪的黄海和东海海洋学研究[D]. 厦门:厦门大学,2008. Men Wu. The Study on the Oceanography of the Yellow Sea and the East China Sea Traced by Radium Isotopes[D]. Xiamen:Xiamen University, 2008.[26] 李广雪,杨子庚,刘勇. 中国东部海域海底沉积物成因环境图[M]. 北京:科学出版社,2005. Li Guangxue, Yang Zigeng, Liu Yong. Map of Seafloor Sediment Formation Environment in East China Sea[M]. Beijing:Science Press,2005.[27] 马志勇. 基于氡-222的胶州湾海底地下水排泄研究[D]. 厦门:厦门大学,2013. Ma Zhiyong. Study of Submarine Groundwater Discharge Using Radon in Jiaozhou Bay[D]. Xiamen:Xiamen University,2013.[28] 史经昊. 胶州湾演变对人类活动的响应[D].青岛:中国海洋大学, 2010. Shi Jinghao. Anthropogenic Influences on the Evolution of Jiaozhou Bay[D]. Qingdao:Ocean University of China, 2010.[29] 郭占荣,马志勇,章斌,等. 采用222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J].地球科学:中国地质大学学报, 2013,38(5):1073-1090. Guo Zhanrong, Ma Zhiyong, Zhang Bin, et al. Tracing Submarine Groundwater Discharge and Associate Nutrient Fluxes into Jiaozhou Bay by Continuous 222Rn Measurements[J]. Earth Science:Journal of China University of Geosciences, 2013,38(5):1073-1090.[30] Hwang D W, Kim G, Lee W C, et al. The Role of Submarine Groundwater Discharge (SGD) in Nutrient Budgets of Gamak Bay, a Shellfish Farming Bay, in Korea[J]. Journal of Sea Research, 2010,64(3):224-230.[31] Rapaglia J, Koukoulas S, Zaggia L, et al. Quanti-fication of Submarine Groundwater Discharge and Optimal Radium Sampling Distribution in the Lesina Lagoon, Italy[J]. Journal of Marine Systems, 2012,91(1):11-19.[32] Smoak J M, Sanders C J, Patchineelam S R, et al. Radium Mass Balance and Submarine Groundwater Discharge in Sepetiba Bay, Rio de Janeiro State, Brazil[J]. Journal of South American Earth Sciences, 2012,39(6):44-51.[33] Luo X, Jiao J J, Moore W S, et al. Submarine Groundwater Discharge Estimation in an Urbanized Embayment in Hong Kong via Short-Lived Radium Isotopes and Its Implication of Nutrient Loadings and Primary Production[J]. Marine Pollution Bulletin, 2014,82(1/2):144-154. |
[1] | 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553. |
[2] | 陈盟, 吴勇, 高东东, 常鸣. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843. |
[3] | 刘花台,郭占荣,高爱国,袁晓婕,李开培,章斌,马志勇. 闽江河口区水体中镭的分布特征及河水与海水的混合速率[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1966-1971. |
[4] | 杜尚海,苏小四,郑连阁. CO2泄漏停止后天然条件下浅层含水层的自我修复能力评价[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1980-1986. |
[5] | 石旭飞,张文静,王寒梅,焦珣,何海洋. 人工回灌过程中的水-岩相互作用模拟[J]. 吉林大学学报(地球科学版), 2013, 43(1): 220-227. |
[6] | 杨峰田, 庞忠和, 王彩会, 段忠丰, 罗璐, 李义曼. 苏北盆地老子山地热田成因模式[J]. J4, 2012, 42(2): 468-475. |
[7] | 石旭飞, 董维红, 李满洲, 张岩. 河南平原浅层地下水年龄[J]. J4, 2012, 42(1): 190-197. |
[8] | 姜光辉, 于奭, 常勇. 利用水化学方法识别岩溶水文系统中的径流[J]. J4, 2011, 41(5): 1535-1541. |
[9] | 姜利国, 梁冰. 地球化学作用下饱和-非饱和介质水力-传质-传热耦合模型[J]. J4, 2011, 41(5): 1529-1534. |
[10] | 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854. |
[11] | 辛欣, 卢文喜, 罗建男, 陈社明. DNAPLs污染含水层多相流数值模拟模型的替代模型[J]. J4, 2011, 41(3): 855-860. |
[12] | 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846. |
[13] | 刘丽红, 束龙仓, 鲁程鹏. 基于管道流模型的岩溶含水系统降雨泉流量响应规律--以贵州后寨典型小流域为例[J]. J4, 2010, 40(5): 1083-1089. |
[14] | 卞建民, 查恩爽, 汤洁, 马力, 陈刚. 吉林西部砷中毒区高砷地下水反向地球化学模拟[J]. J4, 2010, 40(5): 1098-1103. |
[15] | 万玉玉, 苏小四, 董维红, 侯光才. 鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J]. J4, 2010, 40(3): 623-630. |
|