吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (1): 61-73.doi: 10.13278/j.cnki.jjuese.201701106

• 地质与资源 • 上一篇    下一篇

麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义

牛君1, 黄文辉2, 丁文龙2, 蒋文龙3, 张亚美2, 漆立新4, 云露4, 吕海涛4   

  1. 1. 中国石油大学(北京)克拉玛依校区石油学院, 新疆 克拉玛依 834000;
    2. 中国地质大学(北京)能源学院, 北京 100083;
    3. 中国石油新疆油田公司博士后工作站, 新疆 克拉玛依 834000;
    4. 中国石化西北油田分公司勘探开发研究院, 乌鲁木齐 830011
  • 收稿日期:2016-01-12 出版日期:2017-01-26 发布日期:2017-01-26
  • 通讯作者: 黄文辉(1961),男,教授,主要从事沉积地球化学研究,E-mail:huangwh@cugb.edu.cn E-mail:huangwh@cugb.edu.cn
  • 作者简介:牛君(1986),女,博士研究生,主要从事沉积学方面研究,E-mail:niujunmm@126.com
  • 基金资助:
    国家油气重大专项(2011ZX05009-002-203);中国石化西北油田分公司勘探开发研究院协作项目(KY2011-S-070)

Carbon and Oxygen Isotope Characteristics and Its Significance of Ordovician Carbonates in Yubei Area of Maigaiti Slope

Niu Jun1, Huang Wenhui2, Ding Wenlong2, Jiang Wenlong3, Zhang Yamei2, Qi Lixin4, Yun Lu4, Lü Haitao4   

  1. 1. Faculty of Petroleum, China University of Petroleum-Beijing, Karamay Campus, Karamay 834000, Xinjiang, China;
    2. School of Energy Resource, China University of Geosciences(Beijing), Beijing 100083, China;
    3. Post-Doctoral Research Center, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    4. Exploration and Development Research Institute, Northwest Oilfield Company, Sinopec, Urumqi 830011, China
  • Received:2016-01-12 Online:2017-01-26 Published:2017-01-26
  • Supported by:
    Supported byMajor National Oil and Gas Projects (2011ZX05009-002-203) and Exploration and Development Research Institute, Sinopec Northwest Oilfield Branch Company (KY2011-S-070)

摘要: 依据实测的塔里木盆地麦盖提斜坡玉北地区41个碳酸盐岩碳氧同位素数据,结合岩石学方法,研究了碳氧同位素的组成、演化及其地质意义。数据显示,δ13C值主要分布在-2.6‰~0.7‰,均值为-1.0‰;δ18O值分布在-9.4‰~-3.5‰,均值为-6.9‰。玉北地区古盐度为118.39~126.34,平均为121.94。奥陶系碳酸盐岩淡水改造作用明显。碳氧同位素的组成和演化不但可以指示沉积环境,而且还与生物生产率以及古海平面变化呈正相关性:δ13C的低值对应于局限台地台内滩亚相沉积环境;δ13C的高值对应于开阔台地滩间海、台内滩亚相沉积环境。碳氧同位素组成还对成岩环境有明显响应:鹰山组δ13C与δ18O均向高负值偏移,表明经历过强烈的表生岩溶作用;蓬莱坝组δ13C低-中负值,δ18O表现为高负值,在白云岩储层中可见鞍状白云石及燧石,主要为深埋藏成岩环境;良里塔格组同位素特征为δ18O高负值,δ13C低正值,并且在进入埋藏岩溶阶段之前还经历过风化壳岩溶作用。

关键词: 碳氧同位素, 沉积环境, 碳酸盐岩, 奥陶系, 麦盖提斜坡, 塔里木盆地

Abstract: Based on 41 analyzed results of carbon and oxygen isotope, we have discussed the compositions, evolution and geological significance of δ18O and δ13C recorded in the carbonates of Ordovician in Yubei area of Tarim basin, using petrologic method. The result shows that δ13C values range from -2.6‰ to 0.7‰, with average value of -1.0‰; and δ18O values range from -9.4‰ to -3.5‰, with average value of -6.9‰. The values of paleosalinity range from 118.39 to 126.34, with average value of 121.94. The transformation of freshwater in Early Ordovician is strong. The isotopic composition and evolution not only indicate the sedimentary environment, but also show positive correlation with bioproductivity and palaeo-sea level changes:low value of δ13C corresponding to platform shoal of restricted platform environment, high value of δ13C corresponds to interbank sea and platform shoal of open marine platform. Different carbon and oxygen isotopes composition also indicates different diagenetic environments. The δ13C and δ18O value of Yingshan Formation are high negative, which suggest that carbonates experienced strong epigenic karstification. The values of δ13C are low to medium negative and δ18O are high negative in Penglaiba Formation, and saddle dolomite and flint occur in the dolomitite reservoir, indicating that carbonate experienced buried diagenetic environment. The δ13C values in Lianglitage Formation are low positive and δ18O are high negative, which suggest that carbonate experienced buried diagenetic environment.

Key words: carbon and oxygen isotope, depositional environment, carbonates, Ordovician, Maigaiti slope, Tarim basin

中图分类号: 

  • P597
[1] 孔兴功. 石笋氧碳同位素古气候代用指标研究进展[J]. 高校地质学报, 2009, 15(2):165-170. Kong Xinggong. Advance in Study of Oxygen and Carbon Isotope Variations in Cave Stalagmites as Palaeo-Climate Proxies[J]. Geological Journal of China Universities, 2009, 15(2):165-170.
[2] Veizer J, Fritz P, Jones B. Geochemistry of Brachi-opods:Oxygen and Carbon Isotopic Records of Paleozoic Oceans[J]. Geochimica et Cosmochimica Acta, 1986, 50(8):1679-1696.
[3] Arthur M A. The Carbon Cycle-Controls of Atmosp-heric CO2 and Climate in the Geologic Past[C]//Berger W M, Crowell J C. Climate in Earth History. Washington D C:National Academy Press, 1982:55-67.
[4] Kroopnick P M, Margolis M V, Wong C S. δ13C Variation in Marine Carbonate Sediments as Indicators of the CO2 Balance Between Atmosphere and Oceans[C]//Anderson N R,Malahoff A. The Fate of Fossil Fuel CO2 in the Ocean. New York:Plenum Press, 1977:295-321.
[5] Wadleigh M A, Veizer J.18O/16O and 13C/12C in Lower Paleozoic Articulate Brachiopods:Implications for the Isotopic Composition Seawater[J]. Geochim et Cosmochimica Acta, 1992, 56:431-443.
[6] 严兆彬,郭福生,潘家永,等. 碳酸盐岩C,O,Sr同位素组成在古气候、古海洋环境研究中的应用[J]. 地质找矿论丛, 2005, 20(1):53-56. Yan Zhaobin, Guo Fusheng, Pan Jiayong, et al. Application of C, O and Sr Isotope Composition of Carbonates in Research of Paleoclimate and Paleooceantic Environment[J]. Contributions to Geology and Mineral Resources Research, 2005, 20(1):53-56.
[7] 高志前,樊太亮,李岩,等. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. 吉林大学学报(地球科学版), 2006, 36(4):549-556. Gao Zhiqian, Fan Tailiang, Li Yan, et al. Study on Eustatic Sea-Level Change Rule in Cambrian-Ordovician in Tarim Basin[J]. Journal of Jilin University(Earth Science Edition), 2006,36(4):549-556.
[8] 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4):17-30. Zhang Xiulian. Relationship Between Carbon and Oxygen Stable Isotope in Carbonate Rocks and Paleosalinity and Paleotemperature of Seawater[J]. Acta Sedimentological Sinica, 1985, 3(4):17-30.
[9] 罗顺社, 汪凯明. 河北宽城地区中元古代高于庄组碳酸盐岩碳氧同位素特征[J]. 地质学报, 2010, 84(4):492-499. Luo Shunshe, Wang Kaiming. Carbon and Isotope Composition of Carbonatic Rock from the Mesoproterozoic Gaoyuzhuang Formation in the Kuancheng Area, Hebei Province[J]. Acta Geologica Sinica, 2010, 84(4):492-499.
[10] 桑树勋,郑永飞,张华,等. 徐州地区下古生界碳酸盐岩的碳、氧同位素研究[J]. 岩石学报, 2004, 20(3):707-716. Sang Shuxun, Zheng Yongfei, Zhang Hua, et al. Researches on Carbon and Oxygen Stable Isotopes of Lower Paleozoic Carbonates in Xuzhou Area[J]. Acta Petrologica Sinica, 2004, 20(3):707-716.
[11] 陈荣坤. 稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用[J]. 沉积学报, 1994, 12(4):11-21. Chen Rongkun. Application of Stable Oxygen and Carbon Isotope in the Research of Carbonate Diagenetic Environment[J]. Acta Sedimentological Sinica, 1994, 12(4):11-21.
[12] 谭广辉, 邱华标, 余腾孝, 等. 塔里木盆地玉北地区奥陶系鹰山组油藏成藏特征及主控因素[J]. 石油与天然气地质, 2014, 35(1):26-32. Tan Guanghui, Qiu Huabiao, Yu Tengxiao, et al. Characteristics and Main Controlling Factors of Hyfrocatbon Accumulation in Ordovician Yingshan Formation in Yubei Area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(1):26-32.
[13] 丁文龙, 漆立新, 云露,等. 塔里木盆地巴楚麦盖提地区古构造演化及其对奥陶系储层发育的控制作用[J]. 岩石学报, 2012, 28(8):2542-2556. Ding Wenlong, Qi Lixin, Yun Lu,et al. The Tectonic Evolution and Its Controlling Effects on the Development of Ordovician Reservoir in Bachu-Markit Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(8):2542-2556.
[14] 杜永明, 余腾孝, 郝建龙, 等. 塔里木盆地玉北地区断裂特征及控制作用[J]. 断块油气田, 2013, 20(2):170-174. Du Yongming, Yu Tengxiao, Hao Jianlong, et al. Fracture Characteristics and Control Action on Hydrocarbon Accumulation Yubei Area of Tarim Basin[J]. Fault-Block Oil & Gas Field, 2013, 20(2):170-174.
[15] 张旭光. 玉北地区碳酸盐岩储层地震响应特征研究[J]. 石油物探, 2012, 51(5):493-501. Zhang Xuguang. Study on Seismic Response Characteristics of Carbonate Reservoir in Yubei Area[J]. Geophysical Prospecting for Petroleum, 2012, 51(5):493-501.
[16] 黄擎宇, 张哨楠, 叶宁, 等. 玉北地区下奥陶统白云岩岩石学、地球化学特征及成因[J]. 石油与天然气地质, 2014, 35(3):391-400. Huang Qingyu, Zhang Shaonan, Ye Ning, et al. Petrologic, Geochemical Characteristics and Origin of the Lower Ordovician Dolomite in Yubei Area[J]. Oil & Gas Geology, 2014, 35(3):391-400.
[17] 张水昌, Wang R L, 金之钧, 等. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系:碳氧同位素新证据[J].地质学报,2006, 80(3):459-466. Zhang Shuichang,Wang R L, Jin Zhijun, et al. The Relationship Between the Cambrian-Ordovician High-TOC Source Rock Development Variations in the Tariam Basin Western China:Carbon and Oxygen Isotope Evidence[J]. Acta Geologica Sinica, 2006, 80(3):459-466.
[18] 朱金富, 于炳松, 黄文辉, 等. 塔里木盆地塔中地区晚寒武世-奥陶纪碳酸盐岩碳、氧同位素特征[J]. 大庆石油地质与开发, 2008, 27(1):39-42. Zhu Jinfu, Yu Bingsong, Huang Wenhui, et al. Carbon and Oxygen Isotope Features of Late Cambrian-Ordovician in Central Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(1):39-42.
[19] 彭苏萍, 何宏, 邵龙义, 等. 塔里木盆地-C-O碳酸盐岩碳同位素组成特征[J]. 中国矿业大学学报, 2002, 31(4):26-30. Peng Suping, He Hong, Shao Longyi, et al. Carbon Isotopic Compositions of the Cambrian-Ordovician Carbonates in Tarim Basin[J]. Journal of China University of Mining & Technology, 2002, 31(4):26-30.
[20] 王大锐, 白玉雷, 贾承造. 塔里木盆地油区石炭系海相碳酸盐岩同位素地球化学研究[J]. 石油勘探与开发, 2001, 28(6):38-41. Wang Darui, Bai Yulei, Jia Chengzao. Stable Isotopic Geochemistry of the Carboniferous Marine Carbonates in the Tarim Basin[J]. Petroleum Exploration and Development, 2001, 28(6):38-41.
[21] 斯尚华, 陈红汉, 谭先锋, 等. 塔里木盆地麦盖提斜坡玉北地区奥陶系油气输导体系与成藏期[J].地球科学:中国地质大学学报, 2013, 38(6):1271-1280. Si Shanghua, Chen Honghan, Tan Xianfeng, et al. Hydrocarbon Accumulation Period and Its Carrier Systems in Ordovician Reservoir of Yubei Area, Markit Slop Tarim Basin[J]. Earth Science:Journal of China University of Geosciences, 2013, 38(6):1271-1280.
[22] 张仲培, 刘士林, 杨子玉, 等. 塔里木盆地麦盖提斜坡构造演化及油气地质意义[J]. 石油与天然气地质, 2011, 32(6):909-919. Zhang Zhongpei, Liu Shilin, Yang Ziyu, et al. Tectonic Evolution and Its Petroleum Geological Significances of the Maigaiti Slop, Tarim Basin[J]. Oil & Gas Geology, 2011, 32(6):909-919.
[23] 康玉柱. 中国古生代碳酸盐岩古岩溶储集特征与油气分布[J]. 天然气工业, 2008, 28(6):1-12. Kang Yuzhu. Characteristics and Distribution Laws of Paleokarst Hydrocarbon Reservoirs in Palaeozoic Carbonate Formations in China[J]. Natural Gas Industry, 2008, 28(6):1-12.
[24] 周新源, 杨海军, 李勇, 等. 中国海相油气田勘探实例之七:塔里木盆地和田河气田的勘探与发现[J]. 海相油气地质, 2006, 11(3):55-62. Zhou Xinyuan, Yang Haijun, Li Yong, et al. Cases of Discovery and Exploration of Marine Fields in China:Part 7:Hotanhe Gas Field in Tarim Basin[J]. Marine Origin Petroleum Geology, 2006, 11(3):55-62.
[25] 彭花明, 郭福生, 严兆彬, 等. 浙江江山震旦系碳同位素异常及其地质意义[J]. 地球化学, 2006, 35(6):577-585. Peng Huaming, Guo Fusheng, Yan Zhaobin, et al. Sinian Carbon Isotope Anomalies and Their Geologic Significance in Jiangshan, Zhejiang Province[J]. Geochimica, 2006, 35(6):577-585.
[26] Derry L A, Kaufman A J, Jacobsen S B. Sedimentary Cycling and Environmental Change in the Late Proterozoic:Evidence from Stable and Radiogenic Isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3):1317-1329.
[27] Veizer J, Ala D, Azmy K, et al.87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater[J]. Chemical Geology, 1999, 161(1/2/3):59-88.
[28] Qing H, Veizer J. Oxygen and Carbon Isotopic Com-position of Ordovician Brachiopods:Implications for Coeval Seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20):4429-4442.
[29] Keith M L, Weber J N. Isotopic Composition and En-vironmental Classification of Selected Limestones and Fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28:1786-1861.
[30] 王鸿祯. 地层学的几个基本问题及中国地层学可能的发展趋势[J]. 地层学杂志, 2006, 30(2):97-102. Wang Hongzhen. Some Fundamental Problems of Stratigraphy and the Possible Tendency of Development of Stratigraphy in China[J]. Journal of Stratigraphy, 2006, 30(2):97-102.
[31] Baud A, Magaritz M, Holser W T. Permian-Triassic of the Tethys:CarbonIsotope Studies[J]. Geologische Rundschau, 1989, 78:649-677.
[32] 江茂生, 朱井泉, 陈代钊, 等. 塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J]. 中国科学:D辑:地球科学版, 2002, 32(1):36-42. Jiang Maosheng, Zhu Jingquan, Chen Daizhao, et al. Carbon and Strontium Isotope Features of Late Cambrian-Ordovician in Tarim Basin and the Response of Sea Level Change[J]. Science in China:Series D:Earth Science Edition, 2002, 32(1):36-42.
[33] 陈骏, 王鹤年. 地球化学[M]. 北京:科学出版社, 2004:115-124. Chen Jun, Wang Henian. Geochemistry[M]. Beijing:Science Press, 2004:115-124.
[34] 卢武长. 稳定同位素地球化学[M]. 成都:成都地质学院出版社, 1986:173-189. Lu Wuchang. Stable Isotope Geochemistry[M]. Chengdu:Chengdu College of Geology Press, 1986:173-189.
[35] 谭富文, 王剑, 王小龙, 等. 羌塘盆地雁石坪地区中-晚侏罗世碳、氧同位素特征与沉积环境分析[J]. 地球学报, 2004, 25(2):119-126. Tan Fuwen, Wang Jian, Wang Xiaolong, et al. Analysis of Carbon and Oxygen Isotope Composition and Sedimentary Environment of the Yanshiping Area of the Qiangtang Basin in Middle-Late Jurassic[J]. Acta Geoscientica Sinica, 2004, 25(2):119-126.
[36] 张师本, 高琴琴. 塔里木盆地震旦纪至二叠纪地层古生物:II:柯坪巴楚地区分册[M]. 北京:石油工业出版社, 1992:1-329. Zhang Shiben, Gao Qinqin. Paleontology of Simian-Permian in Tarim Basin:II:Keping Bachu Area[M]. Beijing:Petroleum Industry Press, 1992:1-329.
[37] Knoerich A C, Mutti M. MissingAragonitic Biota and the Diagenetic Evolution of Heterozoan Carbonates:A Case Study from the Oligo-Miocene of the Central Mediterranean[J]. Journal of Sedimentary Research, 2006, 76(5/6):871-888.
[38] Zhen R C, Liu H N, Wu L. Geochemical Charac-teristics and Diagenetic Fluid of the Callovian-Oxfordian Carbonate Reservoirs in Amu Darya Basin[J]. Acta Petrologica Sinica, 2012, 3(28):961-970.
[39] 倪新锋, 张丽娟, 沈安江, 等. 塔北地区奥陶系碳酸盐岩古岩溶类型、期次及叠合关系[J]. 中国地质, 2009, 36(6):1312-1321. Ni Xinfeng, Zhang Lijuan, Shen Anjiang, et al. Paleo-karstification Types, Karstification Periods and Superimposition Relationship of Ordovician Carbonates in Northern Tarim Basin[J]. Geology in China, 2009, 36(6):1312-1321.
[40] Ahr W M. Geology of Carbonate Reservoirs[M]. New Jersey:John Wiley & Sons, Inc, Hoboken, 2008.
[41] Cuia R D, Riva A, Scifoni A. Dolomite Characte-ristics and Diagenetic Model of the Calcari Grigi Group(Asiago Plateau, Southern Alps-Italy):An Example of Multiphase Dolomitization[J]. Sedimentology, 2011, 58(6):1347-1369.
[42] 郑和荣, 刘春燕, 吴茂炳, 等. 塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J]. 石油学报, 2009, 30(1):9-15. Zheng Herong, Liu Chunyan, Wu Maobing, et al. Burial Dissolution of Ordovician Granule Limestone in Tarim Basin[J]. Acta Petrolei Sinica, 2009, 30(1):9-15.
[1] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[2] 方晶, 王福, 方雨婷, 潘隆, 李杨, 胡克, 齐乌云, 王中良. 钻孔岩心黏土混浊水电导率、黄铁矿、pH相关性分析及其在古沉积环境复原的应用:以渤海湾西岸平原DC01孔为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1154-1164.
[3] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[4] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[5] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[6] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
[7] 陈斐然, 张颖, 徐祖新, 谭程, 周肖肖. 全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 974-989.
[8] 高福红, 张永胜, 蒲秀刚, 杨杨, 张鐘月. 白云岩化作用类型及机理——以歧口凹陷古近系沙河街组一段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 355-369.
[9] 范卓颖, 林承焰, 鞠传学, 韩长城, 熊陈微. 塔河油田二区奥陶系优势储集体特征及控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(1): 34-47.
[10] 杜治利, 曾昌民, 邱海峻, 杨有星, 张亮. 塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J]. 吉林大学学报(地球科学版), 2016, 46(3): 651-660.
[11] 陈永胜, 李建芬, 王福, 田立柱, 商志文, 施佩歆, 姜兴钰, 王宏. 渤海湾西岸现代岸线钻孔记录的全新世沉积环境与相对海面变化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 499-517.
[12] 赵晓东, 胡昌松, 凌小明, 李军敏. 重庆南川-武隆铝土矿含矿岩系稀土元素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1691-1701.
[13] 徐波, 唐铁柱, 李辰. 鄂尔多斯盆地中东部马五段碳酸盐岩气藏富气主控因素—以陕200井区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1299-1309.
[14] 马伯永, 王根厚, 李尚林, 徐红燕. 羌塘盆地东部中侏罗统陆源碎屑与碳酸盐混合沉积成岩特征[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1310-1321.
[15] 王加昇, 温汉捷. 贵州交犁—拉峨汞矿床方解石Sm-Nd同位素年代学[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1384-1393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!