吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (1): 95-105.doi: 10.13278/j.cnki.jjuese.201701109
曹建劲1,2, 李映葵1, 刘昶1, 袁雪玲1
Cao Jianjin1,2, Li Yingkui1, Liu Chang1, Yuan Xueling1
摘要: 为了查明地气微粒特征与隐伏矿体的关系,对贵州关岭丙坝铜矿床进行地气微粒采样,并用透射电子显微镜进行分析。研究结果表明:地气微粒存在形式有微粒聚合体和单个微粒,以微粒聚合体为主。单个微粒形态各异,有球状、板状、立方状、椭球状、条状、不规则状等,粒度一般在几纳米到300 nm之间;微粒聚合体多呈链状、浑圆状、不规则状。微粒的元素组成与地下隐伏矿体具有较好的相关性,且发现较多微粒中含有高浓度的Fe、Mn、Pb、Zn等元素,这无疑对该矿区今后的地质找矿具有指导意义。此外,通过对比不同矿床的地气微粒特征,发现矿床类型不同,微粒的种类、成分、形态等特征有差异,但相同类型的矿床却具有较大相似性。矿床地气微粒特征与地下隐伏矿床具有较好相关性,在相似地质环境下形成的矿床微粒元素组成、大小大体上具有相似性,但其间的微粒组合、形态等仍会存在一定的差异性。因此,可以通过对隐伏金属矿床地气微粒特征的研究,建立不同矿床类型地气微粒特征模型。
中图分类号:
[1] Kristiansson K, Malmqvist L. A New Model Mecha-nism for the Transportation of Radon Through the Ground[C]//Society of Exploration Geophysics. Houston:Proceedings of Fiftieth Annual International Meeting, 1981, 46(4):462. [2] Kristiansson K, Malmqvist L. Evidence for Nondi-ffusive Transport of 86222Rn in the Ground and a New Physical Model for the Transport[J]. Geophysics, 1982, 47(10):1444-1452. [3] Malmqvist L, Kristiansson K. Experimental Evidence for an Ascending Microflow of Geogas in the Ground[J]. Earth and Planetary Science Letters, 1984, 70(2):407-416. [4] Kristiansson K, Malmqvist L, Persson W. Geogas Prospecting:A New Tool in the Search for Concealed Mineralizations[J]. Endeavour, 1990, 14(1):28-33. [5] 刘应汉,汪明启,赵恒川,等. 寻找隐伏矿的"地气"测量方法原理及应用前景[J]. 青海国土经略, 2006, 3:41-42. Liu Yinghan, Wang Mingqi, Zhao Hengchuan, et al. Searching for Geogas in Concealed Deposits:The Measurement Principle and the Application Prospect[J]. Management & Strategy of Qinghai Land & Resources, 2006, 3:41-42. [6] 任春,孙长青,汤玉平,等. 油气勘探中壤气烃的采集与应用[J]. 物探与化探, 2010, 34(1):63-65. Ren Chun, Sun Changqing, Tang Yuping, et al. The Collection and Application of Soil Gas Hydrocarbon in Oil and Gas Exploration[J]. Geophysical and Geochemical Exploration, 2010, 34(1):63-65. [7] 鲁人齐,王多义,刘亚伟,等. 川西新场气田地气测量试验[J]. 物探与化探, 2008, 32(6):678-681. Lu Renqi, Wang Duoyi, Liu Yawei, et al. Experimental Geogas Survey in the Xinchang Gas Field of Western Sichuan[J]. Geophysical and Geochemical Exploration, 2008, 32(6):678-681. [8] 杨凤根,童纯菡. 地气测量在宣汉气田上的应用[J]. 矿物岩石, 1998, 18(3):99-105. Yang Fenggen, Tong Chunhan. Application of Geogas Prospecting in Xuanhan Gas Field[J]. Journal of Mineralogy and Petrology, 1998, 18(3):99-105. [9] 刘应汉. 青海拉水峡铜镍矿纳米物质地球化学异常特征及找矿模型[J]. 地质与勘探, 2003, 39(2):11-15. Liu Yinghan. The Anomalous Characteristic and the Mode for Prospecting Ores of the Nanoscale Material Geochemical Measurement in Lashuixia Copper-Nickel Deposit in Qinghai[J]. Geology and Prospecting, 2003, 39(2):11-15. [10] Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale Metals in Earthgas and Mobile Forms of Metals in Overburden in Wide-Spaced Regional Exploration for Giant Deposits in Overburden Terrains[J]. Journal of Geochemical Exploration, 1997, 58(1):63-72. [11] Wang X Q, Xie X J, Ye S R. Concepts for Geoche-mical Gold Exploration Based on the Abundance and Distribution of Ultrafine Gold[J]. Journal of Geochemical Exploration, 1995, 55(1):93-101. [12] 施俊法,吴传璧. 金属微粒迁移新机制及其意义综述[J]. 地质科技情报,1998,17(4):81-86. Shi Junfa, Wu Chuanbi. Overview of a New Mechanism of the Transport for the Metal Particulate and Its Implication[J]. Geological Science and Technology Information, 1998, 17(4):81-86. [13] 施俊法,周平,唐金荣,等. 关于金属矿床深部找矿关键技术发展战略的思考[J]. 地质通报,2009, 28(2):198-207. Shi Junfa, Zhou Ping, Tang Jinrong, et al. Thoughts on Developing Strategy of Key Technologies Used for Deep Metallic Ore-Prospecting[J]. Geological Bulletin of China, 2009, 28(2):198-207. [14] 汪明启. 国际勘查地球化学现状和发展趋势:第21届勘查地球化学国际会议介绍[J]. 地球科学进展,2005,20(4):477-478. Wang Mingqi. Exploration Geochemistry Updates and Possible Trends from the 21th International Geochemical Exploration Symposium[J]. Advances in Earth Science, 2005, 20(4):477-478. [15] 汪明启,高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学,2007,36(4):391-399. Wang Mingqi, Gao Yuyan. Tracing Source of Geogas with Lead Isotopes:A Case Study in Jiaolongzhang Pb-Zn Deposit, Gansu Province[J]. Geochemica, 2007, 36(4):391-299. [16] 周四春,刘晓辉,童纯菡,等. 地气测量技术及在隐伏矿找矿中的应用研究[J]. 地质学报,2014, 88(4):736-754. Zhou Sichun, Liu Xiaohui, Tong Chunhan, et al. Application Research of Geogas Survey in Prospecting Concealed Ore[J]. Acta Geologica Sinica, 2014, 88(4):736-754. [17] 葛良全,沈松平. 隐伏断裂上方地气异常特征及其机理研究[J]. 成都理工学院学报, 1997, 24(3):29-35. Ge Liangquan, Shen Songping. The Character of Geogas Anomaly on Concealed Faults and Its Mechanism[J]. Journal of Chengdu University of Technology, 1997, 24(3):29-35. [18] Wang G C, Liu C L, Wang J H, et al. The Use of Soil Mercury and Radon Gas Surveys to Assist the Detection of Concealed Faults in Fuzhou City, China[J]. Environmental Geology, 2006, 51(1):83-90. [19] Toutain J P, Sortino F, Baubron J C, et al. Structure and CO2 Budget of Merapi Volcano During Inter-Eruptive Periods[J]. Bulletin of Volcanology, 2009, 71(7):815-826. [20] Zhou X C, Du J G, Chen Z, et al. Geochemistry of Soil Gas in the Seismic Fault Zone Produced by the Wenchuan Ms 8.0 Earthquake, Southwestern China[J]. Geochemical Transactions, 2010, 11(5):5-10. [21] Sj blom R, Hermansson H P, Åkerblom G. Geogas in Crystalline Bedrock and Its Potential Significance for Disposal of Nuclear Waste[C]//MRS Proceedings. Cambridge:Cambridge University Press, 1994, 353:477. [22] Annunziatellis A, Ciotoli G, Lombardi S, et al. Short- and Long-Term Gas Hazard:The Release of Toxic Gases in the Alban Hills Volcanic Area (Central Italy)[J]. Journal of Geochemical Exploration, 2003, 77(2):93-108. [23] 曹建劲. 地气微粒特征和元素含量结合探测隐伏矿床技术[J]. 金属矿山, 2009(2):1-4. Cao Jianjin. The Technique for Detecting Concealed Deposits by Combining Geogas Particles Characteristics with Element Concentrations[J]. Metal Mine, 2009(2):1-4. [24] Cao J J, Hu R Z, Liang Z R, et al. TEM Observation of Geogas-Carried Particles from the Changkeng Concealed Gold Deposit, Guangdong Province, South China[J]. Journal of Geochemical Exploration, 2009, 101(3):247-253. [25] Wei X J, Cao J J, Holub R F, et al. TEM Study of Geogas-Transported Nanoparticles from the Fankou Lead-Zinc Deposit, Guangdong Province, South China[J]. Journal of Geochemical Exploration, 2013, 128:124-135. [26] Cao J J, Liu C, Xiong Z H, et al. Particles Carried by Ascending Gas flow at the Tong Change Copper Mine, Guizhou Province, China[J]. Science China Earth Sciences, 2010, 53(11):1647-1654. [27] 曹建劲,刘昶,张鹏,等. 云南会泽大黑山玄武岩铜矿床地气微粒特征[J]. 金属矿山, 2011(6):113-115. Cao Jianjin, Liu Chang, Zhang Peng, et al. The Characteristic of Geogas Particles from Daheishan Basalt Copper Deposit in Huize County of Yunnan[J]. Metal Mine, 2011(6):113-115. [28] 刘昶,曹建劲,柯红玲. 滇东北永胜得铜矿床地气微粒特征[J]. 化工矿产地质, 2011, 33(4):201-207. Liu Chang, Cao Jianjin, Ke Hongling. Geogas Characteristic of Yongshengde Copper Ores in the Northeastern Yunnan, China[J]. Geology of Chemical Minerals, 2011, 33(4):201-207. [29] Hu G, Cao J J, Hopke P K, et al. Study of Carbon-Bearing Particles in Ascending Geogas Flows in the Dongshengmiao Polymetallic Pyrite Deposit, Inner Mongolia, China[J]. Resource Geology, 2015, 65(1):13-26. [30] Dai D L, Cao J J, Lai P X, et al. TEM Study on Particles Transported by Ascending Gas Flow in the Kaxiutata Iron Deposit, Inner Mongolia, North China[J]. Geochemistry:Exploration, Environment, Analysis, 2015, 15(4):255-271. [31] 黄艳. 黔西南与玄武岩有关的铜矿及其表生成矿过程的实验研究[D].贵阳:中国科学院研究生院, 2006. Huang Yan. An Experimental Study on the Minerogenesis of the Copper Deposits Related to the Emeishan Basalt in the Southwestern Guizhou Province, China[D].Guiyang:Graduate University of Chinese Academy of Science, 2006. [32] 刘昶,曹建劲,熊志华. 地气测量在贵州关岭丙坝铜矿床应用研究[J]. 矿床地质, 2010, 29(增刊1):641-642. Liu Chang, Cao Jianjin, Xiong Zhihua. The Application Research of Geogas Mearsurement in Guanling County of Guizhou Province[J]. Mineral Deposits, 2010, 29(Sup.1):641-642. [33] 王富东,朱笑青,韩涛,等. 峨眉山玄武岩风化淋滤型铜矿成因认识[J]. 矿物学报, 2009, 29(增刊1):88-89. Wang Fudong, Zhu Xiaoqing, Han Tao, et al. The Formation Cause of Basalt Weathering Leaching Copper Deposit in Mount Emei[J]. Acta Mineralogica Sinica, 2009, 29(Sup.1):88-89. [34] 陈文一,刘家仁,王中刚,等. 贵州峨眉山玄武岩喷发期的岩相古地理研究[J]. 古地理学报, 2003, 5(1):17-28. Chen Wenyi, Liu Jiaren, Wang Zhonggang, et al. Study on Lithofacies Palaeogeography During the Permian Emeishan Basalt Exploration in Guizhou Province[J]. Journal of Palaeogeography, 2003, 5(1):17-28. [35] Cao J J, Li Y K, Jiang T, et al. Sulfer-Containing Particles Emitted by Concealed Sulfide Ore Deposits:An Unknown Source of Sulfer-Containing Particles in the Atmosphere[J]. Atmospheric Chemistry and Physics, 2015, 15(12):6959-6969. [36] 严再飞,黄智龙,陈觅,等. 峨眉山溢流玄武岩省高钛玄武岩的两种不同地幔源特征[J]. 吉林大学学报(地球科学版),2010, 40(6):1311-1322. Yan Zaifei, Huang Zhilong, Chen Mi, et al. Two Distinct Mantle Sources for High-Ti Basalts in the Emeishan Overfall Basalt Province[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(6):1311-1322. [37] 夏昭德,姜常义,凌锦兰. 新疆笔架山早二叠世火山岩带岩石成因:来自岩石学、地球化学及同位素年代学的制约[J]. 吉林大学学报(地球科学版),2014,44(3):817-834. Xia Zhaode, Jiang Changyi, Ling Jinlan. Petrogenesis of Early Permian Bijiashan Volcanic Rocks in Beishan Area, Xinjiang, NW China:Evidence from Petrology, Geochemistry and Isotopic Geochronology[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3):817-834. [38] Macnamara J, Thode H G. The Isotopes of Xenon and Krypton in Pitchblende and the Spontaneous Fission of U238[J]. Physical Review, 1950, 80(3):471. [39] Wetherill G W. Spontaneous Fission Yields from Ura-nium and Thorium[J]. Physical Review, 1953, 92(4):907. [40] 赵建如,初凤友,金路,等. 珠江口西部海域表层沉积物重金属元素多尺度空间变化特征[J]. 吉林大学学报(地球科学版),2015, 45(6):1772-1780. Zhao Jianru, Chu Fengyou, Jin Lu, et al. Spatial Multi-Scale Variability of Heavy Metals in Surface Sediments of Western Pearl River Estuary[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1772-1780. |
[1] | 张作伦,曾庆栋,叶杰,贾长顺,李文涛. 草原覆盖区隐伏金属矿体定位预测--以大兴安岭中南段某铅锌矿点为例[J]. J4, 2007, 37(1): 38-0040. |
[2] | 吴国学,李守义,吕志刚,王永祥,汪振涌,崔敏. 团结沟金矿外围十三公里区隐伏矿体预测[J]. J4, 2006, 36(05): 781-786. |
|