吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 818-825.doi: 10.13278/j.cnki.jjuese.201703202

• 地质工程与环境工程 • 上一篇    下一篇

侧向约束下柔性桩复合地基沉降特性

吴有平1,2, 张可能1,2, 刘杰3, 何杰3   

  1. 1. 中南大学地球科学与信息物理学院, 长沙 410083;
    2. 有色资源与地质灾害探查湖南省重点实验, 长沙 410083;
    3. 湖南工业大学土木工程学院, 湖南 株洲 412008
  • 收稿日期:2016-09-11 出版日期:2017-05-26 发布日期:2017-05-26
  • 作者简介:吴有平(1979-),男,博士研究生,工程师,主要从事地基处理方面的研究,E-mail:wwuyn@163.com
  • 基金资助:
    国家自然科学基金项目(51078140,51108176)

Settlement Characteristics of Composite Foundation Reinforced by Flexible Piles with Lateral Restraint

Wu Youping1,2, Zhang Keneng1,2, Liu Jie3, He Jie3   

  1. 1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
    2. Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Hunan Province, Changsha 410083, China;
    3. School of Civil Engineering, Hunan University of Technology, Zhuzhou 412008, Hunan, China
  • Received:2016-09-11 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (51078140, 51108176)

摘要: 侧向约束技术在地基处理工程中能有效地减小地基沉降。本文结合铁路工程与软土工程特性,采用模型试验与数值模拟的方法,研究了侧向约束(桩)对柔性桩(夯实水泥土桩)复合地基沉降的影响,分析了柔性桩和土体沉降变化随荷载水平的变化规律,探讨了侧向约束条件下土体模量、桩间距等因素对地基沉降的影响。研究结果表明:在柔性桩复合地基中设置侧向约束桩,当土体压缩模量较小时,采用2dd为桩径)或3d桩距皆能较好地降低桩的沉降量;随着土体压缩模量的增大,桩距采用3d时减沉作用降低、2d时减沉效果增强、4d时减沉作用不明显;桩间土体沉降量在桩距为2d及3d时,减沉作用呈现先减小后增大的特点,4d时其沉降量减小比值为4%~5%。因此,合理设置侧向约束桩才能有效限制软土侧向挤出,以达到减少复合地基沉降的目的。

关键词: 侧向约束, 柔性桩复合地基, 沉降, 沉降比值

Abstract: Lateral restraint technique can effectively reduce the ground settlement during the treatment practice of soft soil foundation. Based on the characteristics of road engineering and engineering properties of soft soil, the effect of lateral restraint (pile) on the settlement of composite foundation reinforced by flexible pile (rammed soil-cement pile) was studied by means of model experiment and numerical simulation. Furthermore, the changing patterns of pile and soil settlement with the loading level were analyzed, and the influence of soil modulus and pile spacing on foundation settlement was discussed taking the lateral restraint condition into consideration. The results revealed that when lateral restraint piles were applied to the composite foundation reinforced by flexible pile, the pile spacing of 2d (d is pile diameter) and 3d both reduced the pile settlement effectively if soil compression modulus was low; as the soil compression modulus increased, the settlement reducing effects decreased when pile spacing was 3d, and it increased when pile spacing was 2d, while the settlement reducing effects can hardly be observed when pile spacing was 4d. However, as the piles spacing was 2d and 3d, the reducing effect to soil settlement decreased first and then increased; when pile spacing of 4d was applied, the reduced amount of the settlement was around 4%-5%. Therefore, a reasonable setting of lateral restraint pile was required for effectively restricting the lateral extrusion of soft soil, and consequently reducing the settlement of composite foundation.

Key words: lateral restraint, composite foundation reinforced by flexible pile, settlement, settlement ratio

中图分类号: 

  • TU477
[1] 刘峰,范炳娟,张彤. 柔性桩处理高铁路基在沈丹客专中的应用分析[J]. 筑路机械与施工机械化, 2013, 30(11): 104-106. Liu Feng, Fan Bingjuan, Zhang Tong. Analysis on Subgrade Treatment of Shenyang-Dandong Passenger Dedicated Line with Flexible Piles [J]. Bridge and Tunnel Construction and Machinery, 2013, 30(11): 104-106.
[2] 曾长贤,程寅,吴大龙,等. 高速铁路上覆厚砂层下卧厚淤泥层地基不同处理方法的加固效果对比[J]. 中国铁道科学, 2014, 35(4): 1-8. Zeng Changxian, Cheng Yin, Wu Dalong, et al. Comparison of Different Foundation Treatment Effects on Thick Sand Overlying Thick Silt Foundation of High Speed Railway [J]. China Railway Science, 2014, 35(4): 1-8.
[3] 铁路客运网. 2015年铁路新开工项目[EB/OL]. (2015-04-10). http://www.zgtlky.com/bencandy.php? fid= 47&id=72741. Railway Passenger Network. New Railway Project in 2015[EB/OL]. (2015-04-10).http://www.zgtlky.com/bencandy.php?fid=47&id=72741.
[4] Tavenas F, Leroueil S. Effects of Stresses and Time on Yielding of Clays[J]. Jpn Soc of Soil Mech and Found Eng, 1977, 1:319-326.
[5] Handy R L. Does Lateral Stress Really Influence Sett-lement[J]. Geotechnical & Geoenvironmental Engineering, 2001, 127(7): 623-626.
[6] 王志亮,李永池,殷宗泽.考虑土体侧胀性的路堤沉降计算探讨[J]. 岩石力学与工程学报,2005,24(10): 1772-1777. Wang Zhiliang, Li Yongchi, Yin Zongze. Discussion on Settlement Calculation of Embankment Considering Lateral Dilation Behavior of Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1772-1777.
[7] 王峰,金武,王宏坤,等. 考虑侧向变形影响的客运专线路基沉降的修正[J]. 岩土工程学报,2010,32(增刊2): 245-248. Wang Feng, Jin Wu, Wang Hongkun, et al. Amendment of Subgrade Settlement of Passenger Dedicated Line Considering the Lateral Deformation Effects [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Sup. 2): 245-248.
[8] 卢萌盟,谢康和,李传勋,等. 考虑桩土侧向变形的复合地基固结解[J]. 岩土工程学报, 2011, 33(2): 181-187. Lu Mengmeng, Xie Kanghe, Li Chuanxun, et al. Analytical Solution for Consolidation of Composite Ground Considering Lateral Deformations of Column and Surrounding Soil [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 181-187.
[9] Loganathan N, Balasubramaniam A S, Bergado D T. Deformation Analysis of Embankments[J]. Geotechnical Engineering, 1993,119(8): 1185-1206.
[10] 韩君良,赵岩. 高路堤侧向位移沉降特性分析[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(1): 165-167. Han Junliang, Zhao Yan. Analysis on the Settlement Characteristic of Lateral Displacement of the High Embankment[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2012, 36(1): 165-167.
[11] 刘杰,何杰,谭谨. 柔性桩复合地基中软土侧向挤出的影响因素[J]. 中南大学学报(自然科学版),2014,45(7): 2333-2338. Liu Jie, He Jie, Tan Jin. Influencing Factors of Lateral Extrusion on Soft Soil in Composite Foundation with Flexible Columns[J]. Journal of Central South University (Science and Technology), 2014, 45(7): 2333-2338.
[12] 吴保全. 粉土中格栅结构复合地基的原理与技术方法研究[D]. 成都:成都理工大学,2008. Wu Baoquan. Study on the Principles and Technical Methods for Grid Composite Foundation in Silt [D]. Chengdu: Chengdu University of Technology, 2008.
[13] 柏松平,陈兴培,李勇林. 侧向限制法软土处理技术研究[J]. 公路,2005(7): 127-130. Bai Songping, Chen Xingpei, Li Yonglin. Study of Soft Soil Treatment Technology of Lateral Restraint [J]. Highway, 2005 (7): 127-130.
[14] 吴有平,刘杰,何杰. 水泥土桩应力测试方法与试验[J]. 湖南工业大学学报,2012,26(1): 23-26. Wu Youping, Liu Jie, He Jie. Experiment and Study on the Stress Testing of Cement-Soil Piles [J]. Journal of Hunan University of Technology, 2012, 26(1): 23-26.
[15] 王常明, 常高奇, 吴谦, 等. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813. Wang Changming, Chang Gaoqi, Wu Qian, et al. Pile-Soil Interaction Mechanism and a Method to Determine Vertical Bearing Capacity of Prestressed Concrete Pipe Pile[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 805-813.
[16] 朱小军,龚维明,赵学亮,等. 垫层土拱效应试验与计算方法[J]. 东南大学学报(自然科学版),2013,43(5): 957-961. Zhu Xiaojun, Gong Weiming, Zhao Xueliang, et al. Experiment and Calculation Methods of Soil Arching in Cushion[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 957-961.
[17] 王立明. 有支点柔性支护结构主动区土压力和增强机理研究[D]. 上海:同济大学,2007. Wang Liming. The Research on Earth Pressure an Reinforced Mechanism in the Active Area behind Propped Flexible Retaining Walls[D]. Shanghai: Tongji University, 2007.
[1] 王洁, 宫辉力, 陈蓓蓓, 高明亮, 周超凡, 梁悦, 陈文锋. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3): 836-845.
[2] 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520.
[3] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[4] 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594.
[5] 高军义,刘志宏,吴相梅,杨旭,黄超义,梅梅,孙理难. 海拉尔盆地乌尔逊凹陷构造变形对沉降中心迁移的控制[J]. 吉林大学学报(地球科学版), 2014, 44(1): 15-24.
[6] 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965.
[7] 张翠梅,赵中贤,孙珍,庞雄,柳保军,李鹏春. 珠江口盆地白云凹陷东沙25凸起构造演化[J]. 吉林大学学报(地球科学版), 2013, 43(1): 57-66.
[8] 张敏,佴磊,郭源,吕岩. 断层对采空区地表沉降影响的模拟[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1834-1838.
[9] 冯慧,吴昌志,郑远川,顾连兴,蒋少涌,孙洪涛,高龙. 燕辽成矿带养马甸斑岩型钼矿成矿岩体的年代学、地球化学及成岩成矿环境[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1711-1729.
[10] 陈永胜, 王宏, 裴艳东, 田立柱, 李建芬, 商志文. 渤海湾西岸晚第四纪海相地层划分及地质意义[J]. J4, 2012, 42(3): 747-759.
[11] 沈宇鹏, 冯瑞玲, 余江, 刘辉. 增压式真空预压处理软基的加固机理[J]. J4, 2012, 42(3): 792-797.
[12] 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813.
[13] 汤洁, 李娜, 李海毅, 卞建民, 李昭阳, 崔玉军. 大庆市大气干湿沉降重金属元素通量及来源[J]. J4, 2012, 42(2): 507-513.
[14] 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484.
[15] 李亚敏, 施小斌, 徐辉龙, 何家雄, 刘兵. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. J4, 2012, 42(1): 47-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!