吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 925-932.doi: 10.13278/j.cnki.jjuese.201703306

• 地球探测与信息技术 • 上一篇    下一篇

基于Monte Carlo模拟的三维剖面地质界线不确定性分析

侯卫生1,2, 杨翘楚1,2, 杨亮1,2, 崔婵婕1,2   

  1. 1. 中山大学地球科学与工程学院, 广州 510275;
    2. 广东省地质过程与矿产资源探查重点实验室, 广州 510275
  • 收稿日期:2016-08-02 出版日期:2017-05-26 发布日期:2017-05-26
  • 作者简介:侯卫生(1976-),男,副教授,博士,主要从事三维地质模拟研究,E-mail:houwsh@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41102207,41472300);中央高校基本科研业务费专项资金项目(12lgpy19);教育部高等学校博士学科点专项科研基金项目(20100171120001)

Uncertainty Analysis of Geological Boundaries in 3D Cross-Section Based on Monte Carlo Simulation

Hou Weisheng1,2, Yang Qiaochu1,2, Yang Liang1,2, Cui Chanjie1,2   

  1. 1. School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Mineral Resource Exploration & Geological Processes, Guangzhou 510275, China
  • Received:2016-08-02 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41102207, 41472300), the Fundamental Research Funds for the Central Universities (12lgpy19) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20100171120001)

摘要: 三维剖面地质界线是构建三维地质结构模型的重要基础数据,其不确定性会影响三维模型的几何形态和属性分布。以单一分布为假设前提的统计学不确定性分析方法掩盖了其他概率分布特征对模型的影响。突破单一误差分布条件的假设前提,本文使用Monte Carlo方法模拟了不同概率分布情况下地质剖面数据中地质界线的抽样采集,以及地质界线空间分布的不确定性;依托地质界线空间位置与地质属性的耦合关系,提出了用地质属性概率分布实现地质界线空间不确定性的定量可视化,并结合实际地质剖面探讨了多种概率分布条件下地质界线的空间不确定性。实例研究表明,基于Monte Carlo模拟的不确定性分析方法可以突破单一误差分布假设条件,结合地质属性概率可充分揭示出建模数据的内在不确定性与模型外在要素形态之间的耦合关系。

关键词: 不确定性分析, Monte Carlo模拟, 地质界线, 地质属性概率, 三维地质剖面

Abstract: Geological boundaries in 3D cross-sections are important data for constructing 3D geological models, and their uncertainties will affect the geometry and attributes distribution in final models. The approaches based on the assumption of single error distribution for uncertainty analysis cover up other characteristics caused by other different error distributions. To break the single error distribution assumptions, based on the Monte Carlo simulation method, this paper simulated the sampling acquisition with different error probability distributions and spatial uncertainty of geological boundaries in 3D geological cross-section. Based on the coupling relationship between spatial position and geological attributes, a term of "geological attribute probability" was proposed to quantitatively visualize uncertainty of geological boundaries. Combined with concrete geological cross-section, this paper discussed the spatial uncertainty distribution of geological boundaries that followed multiple error probability distribution functions. The concrete example shows that the presented approach can overcome the defects of single error distribution assumption. Combined with the geological attribute probability, the approach can also reveal the coupling relationship between inner uncertainties existed in modeling input data and feature shape of models.

Key words: uncertainty analysis, Monte Carlo simulation, geological boundaries, geological attribute probability, 3D geological cross-section

中图分类号: 

  • P628.1
[1] Ben Waggoner. The Map That Changed the World: William Smith and the Birth of Modern Geology[J]. Palaeontologia Electronica, 2002, 5(1): 1-4.
[2] Wu Q, Xu H, Zou X. AnEffective Method for 3D Geological Modeling with Multi-Source Data Integration[J]. Computers & Geosciences, 2005, 31(1):35-43.
[3] 潘懋, 方裕, 屈红刚. 三维地质建模若干基本问题探讨[J]. 地理与地理信息科学, 2007, 23(3):1-5. Pan Mao, Fang Yu, Qu Honggang. Discussion on Several Foundational Issues in Three-Dimensional Geological Modeling[J]. Geography and Geo-Information Science, 2007, 23(3):1-5.
[4] 张剑波, 李谢清, 石阳,等. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3):860-868. Zhang Jianbo, Li Xieqing, Shi Yang, et al. Processes and Technology of Three-Dimensional Geological Modeling System in Numerical Reservoir Simulation[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):860-868.
[5] Wu Q, Xu H, Zou X, et al. A 3D Modeling Approach to Complex Faults with Multi-Source Data[J]. Computers & Geosciences, 2015, 77:126-137.
[6] 屈红刚. 基于交叉折剖面的3维地质表面建模方法研究[J]. 测绘学报, 2006, 35(4): 411. Qu Honggang. Three-Dimensional Geological Surface Modeling from Intersected Folded Cross-Sections[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4): 411.
[7] Ming J, Pan M, Qu H, et al. GSIS: A 3DGeological Multi-Body Modeling System from Netty Cross-Sections with Topology[J]. Computers & Geosciences, 2010, 36(6):756-767.
[8] Kaufmann O, Martin T. Reprint of "3D Geological Modelling from Boreholes, Cross-Sections and Geological Maps, Application over Former Natural Gas Storages in Coal Mines"[J]. Computers & Geosciences, 2008, 34(3): 278-290.
[9] Lemon A M, Jones N L. BuildingSolid Models from Boreholes and User-Defined Cross-Sections[J]. Computers & Geosciences, 2003, 29 (5): 547-555.
[10] Wellmann J F, Horowitz F G, Schill E, et al. Towards Incorporating Uncertainty of Structural Data in 3D Geological Inversion[J]. Tectonophysics, 2010, 490(3): 141-151.
[11] Hou W, Yang L, Clarke K. Error Analysis of Multi-Source Data for 3D Geological Modeling Using Entropy-Based Weighting[C]//AGU Fall Meeting 2013. [S. l.]: AGU, 2013: #IN32A-06.
[12] Caers J. ModelingUncertainty in the Earth Sciences [M]. New York: Wiley, 2011.
[13] 史文中. 空间数据与空间分析的不确定性原理[M]. 北京: 科学出版社, 2005. Shi Wenzhong. Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses[M]. Beijing: Science Press, 2005.
[14] 张国芹, 朱长青, 李国重. 基于εm模型的线元位置不确定性度量指标[J]. 武汉大学学报(信息科学版), 2009, 34(4): 431-435. Zhang Guoqin, Zhu Changqing, Li Guozhong. Masurement Indexes of Positional Uncertainty for Plane Line Segment Based on εm Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 431-435.
[15] 李大军, 龚健雅, 谢刚生, 等. GIS中线元的误差熵带研究[J]. 武汉大学学报(信息科学版), 2002, 27(5): 462-466. Li Dajun, Gong Jianya, Xie Gangsheng, et al. Error Entropy Band for Linear Segments in GIS[J]. Geomatics and Information Science of Wuhan University, 2002, 27(5): 462-466.
[16] 田原, 高勇, 刘瑜. 基于场所的GIS 中的不确定性问题及分类框架[J]. 地理与地理信息科学, 2008, 24(6): 1-7. Tian Yuan, Gao Yong, Liu Yu. Uncertainty in Place-Based GIS: A Review and a Research Framework [J]. Geography and Geo-Information Science, 2008, 24(6): 1-7.
[17] Davis C J. Statistics and Data Analysis in Geology[M]. 3rd ed. New York: Wiley, 2002.
[18] Nicholas Metropolis, Ulam S. The Monte Carlo Me-thod[J]. Journal of the American Statistical Association, 1953, 60(247): 115-129.
[19] Morin M A, Ficarazzo F. Monte Carlo Simulation as a Tool to Predict Blasting Fragmentation Based on the Kuz-Ram Model[J]. Computers & Geosciences, 2006, 32(3):352-359.
[20] Tong X, Sun T, Fan J, et al. A Statistical Simulation Model for Positional Error of Line Features in Geographic Information Systems (GIS)[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 136-148.
[21] Shi W, Liu W.A Stochastic Process-Based Model for the Positional Error of Line Segments in GIS[J]. International Journal of Geographical Information Science, 2000, 14 (1): 51-66.
[1] 张军强,吴冲龙,刘刚,刘飞. 空间集成方式的三维地质图编绘关键技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1055-1062.
[2] 陈永良,路来君,李学斌. 多元地球化学异常识别的核马氏距离方法[J]. 吉林大学学报(地球科学版), 2014, 44(1): 396-408.
[3] 陈永良,李学斌. 核概率距离聚类方法及应用[J]. 吉林大学学报(地球科学版), 2013, 43(1): 312-318.
[4] 陈永良, 李学斌. 基于核最小二乘模型的矿产靶区预测[J]. J4, 2011, 41(3): 937-944.
[5] 周永恒, 李守义, 张璟, 徐山. 基于地质背景分析的区域化探数据系统误差校正[J]. J4, 2011, 41(3): 753-758.
[6] 陈永良, 李学斌. 基于核函数理论的系统聚类分析[J]. J4, 2010, 40(5): 1211-1216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!