吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 933-948.doi: 10.13278/j.cnki.jjuese.201703307
• 地球探测与信息技术 • 上一篇
张宝一1,2,3, 杨莉1, 陈笑扬1, 邓浩1, 毛先成1
Zhang Baoyi1,2,3, Yang Li1, Chen Xiaoyang1, Deng Hao1, Mao Xiancheng1
摘要: 以成矿规律研究和成矿条件分析为基础的二维成矿定量预测方法难以精确表达含矿地层的三维空间分布情况,导致其预测结果的可靠性差。本文针对矿产资源预测评价中的真三维地学分析需求,以平面地质图和图切地质剖面图为三维地质建模的数据源,按照线框架建模的技术思路,由剖面轮廓线和地面地质界线联合重构了成矿地质体的三维表面,较好地表达了桂西南地区成锰地质体在三维空间中的分布情况。同时,为了分析三维空间中锰矿资源量的分布情况,本文采用规则体元将研究区的三维地质空间分割为连续场,并结合区域锰矿二维成矿定量预测的成果,获得了研究区1 000 m以浅含锰地层中锰矿资源量的三维空间分布:研究区锰矿资源量主要集中在上泥盆统(以五指山组为主,5 036万t)和下三叠统北泗组(3 447万t);而下石炭统大塘组资源量仅为566万t,以前的二维预测对该地层内赋存的锰矿资源量估计偏高。三维预测较好地反映了含锰地层三维形态对锰矿分布的控制作用,为研究区锰矿定量预测提供了新的技术手段。
中图分类号:
[1] 赵鹏大. 找矿理念:从定性到定量(代序)[J]. 地质通报, 2011, 30(5): 625-629. Zhao Pengda. Prospecting Idea: From Qualitative to Quantitative(Preface)[J]. Geological Bulletin, 2011, 30(5): 625-629. [2] 张宝一, 吴湘滨, 王丽芳, 等. 三维地质建模及应用实例[J]. 地质找矿论丛, 2013, 28(3): 328-336. Zhang Baoyi, Wu Xiangbin, Wang Lifang, et al. Three Dimensional Geological Modeling and Application Cases[J].Contributions to Geology and Mineral Resources Research, 2013, 28(3): 328-336. [3] Houlding S W. 3D Geoscience Modeling: Computer Techniques for Geological Characterization[M]. Berlin: Springer-Verlag, 1994. [4] Mallet J L. Geomodeling[M]. New York: Oxford University Press, 2002. [5] 吴立新, 车德福,郭甲腾. 面向地上下无缝集成建模的新一代三维地理信息系统[J]. 测绘工程, 2006, 15(5): 1-6. Wu Lixin, Che Defu,Guo Jiateng. The New 3DGIS for Seamless Integration of Terrain Overground and Underground Entities[J].Surveying and Mapping Engineering, 2006, 15(5): 1-6. [6] 潘懋, 方裕,屈红刚. 三维地质建模若干基本问题探讨[J]. 地理与地理信息科学, 2007, 23(3): 1-5. Pan Mao, Fang Yu, Qu Honggang.Discussion on Several Foundational Inssues in Three-Dimensional Geological Modeling[J].Geography and Geographic Information Science, 2007, 23(3): 1-5. [7] 薛林福, 李文庆, 张伟, 等. 分块区域三维地质建模方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2051-2058. Xue Linfu, Li Wenqing, Zhang Wei, et al.A Method of Block-Divided 3D Geologic in Regional Scale[J].Journal of Jilin University (Earth Science Edition), 2014, 44(6): 2051-2058. [8] 陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5): 54-62. Chen Jianping,Lü Peng, Wu Wen, et al. A 3D Method for Predicting Blind Orebodies, Based on a 3D Visualization Model and Its Application[J].Earth Science Frontiers, 2007, 14(5): 54-62. [9] 毛先成, 邹艳红, 陈进, 等. 危机矿山深部、边部隐伏矿体的三维可视化预测:以安徽铜陵凤凰山矿田为例[J]. 地质通报, 2010, 29(2/3): 401-413. Mao Xiancheng, Zou Yanhong, Chen Jin, et al. Three-Dimensional Visual Prediction of Concealed Ore Bodies in the Deep and Marginal Parts of Crisis Mines: A Case Study of the Fenghuangshan Ore Field in Tongling, Anhui, China[J].Geological Bulletin, 2010, 29(2/3): 401-413. [10] 张宝一, 吴湘滨, 王丽芳, 等. 红透山铜矿外围隐伏矿体三维定量预测[J]. 中国有色金属学报, 2012, 22(3): 863-871. Zhang Baoyi, Wu Xiangbin, Wang Lifang, et al.3D Quantitative Prediction of Concealed Ore-Body in Surrounding Areas of Hongtoushan Copper Deposit[J].Chinese Journal of Nonferrous Metals, 2012, 22(3): 863-871. [11] 王丽芳, 吴湘滨, 张宝一, 等. 一种可存储路径的三维非均质空间最短距离场生成算法[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1257-1268. Wang Lifang, Wu Xiangbin, Zhang Baoyi, et al.A Path-Savable Shortest-Distance Field Generating Algorithm in Three-Dimensional Heterogenetic Space[J].Journal of Jilin University (Earth Science Edition),2015, 45(4): 1257-1268. [12] 骆华宝. 我国优质锰矿的勘查方向[J]. 地质与勘探, 2002, 38(4): 8-11. Luo Huabao.The Direction of Prospecting for High Quality Manganese Ore Resources in China[J].Geology and Exploration, 2002, 38(4): 8-11. [13] 邓吉秋, 谢杨, 张宝一, 等. ETM+图像锰矿化蚀变信息提取与找矿预测[J]. 国土资源遥感, 2011, 22(1): 102-105. Deng Jiqiu, Xie Yang, Zhang Baoyi,et al.The Extraction of the Manganese Mineralization Alteration Information from the ETM+ Image and Ore Prognosis[J]. Remote Sensing of Land and Resources, 2011, 22(1): 102-105. [14] 毛先成, 曾文波, 周尚国, 等. 桂西—滇东南地区数字地形特征与次生富集锰矿空间分布关系研究[J]. 地质与勘探, 2009, 45(3): 292-298. Mao Xiancheng, Zeng Wenbo, Zhou Shangguo, et al.Research on Relationship between Digital Terrain Characteristics and Spatial Distribution of Secondary Enrichment Manganese Ore in Western Guangxi and Southeastern Yunan, SW China[J]. Geology and Exploration, 2009, 45(3): 292-298. [15] Mao X C, Hu C, Zhou S G, et al. Field Analysis of MetallogenicInformation and Its Application[J]. J Cent South Univ Technol, 2011, 18(1): 196-207. [16] 张宝一, 毛先成, 周尚国, 等. 矿产资源预测评价数据库的设计与实现:以桂西[CD1]滇东南锰矿为例[J]. 地质与勘探, 2009, 45(6): 697-703. Zhang Baoyi, Mao Xiancheng, Zhou Shangguo, et al.The Design and Implement of Prediction and Assessment for Mineral Resources Database: In Case of Manganese Deposit in the Western Guangxi and Southeastern Yunnan Province[J].Geology and Exploration, 2009, 45(6): 697-703. [17] 张宝一, 杨莉, 毛先成, 等. 基于GIS的桂西[CD1]滇东南地区锰矿资源潜力评价[J]. 地质与勘探, 2014, 50(6): 1050-1060. Zhang Baoyi, Yang Li, Mao Xiancheng, et al.The GIS-Based Assessment of Potential Manganese Ore Resoueces in Western Guangxi and Southeastern Yunan Area, China[J]. Geology and Exploration, 2014, 50(6): 1050-1060. [18] 毛先成, 周尚国, 张宝一, 等. 锰矿GIS分析与评价:以桂西—滇东南地区为例[M]. 北京: 地质出版社, 2014. Mao Xiancheng, Zhou Shangguo, Zhang Baoyi,et al. Analysis and Evaluation of GIS in Manganese Ores: A Case Study in Western Guangxi and Southeastern Yunan Area, China[M].Beijing: Geological Publishing House, 2014. [19] Zhang B Y, Li X, Mao X C, et al. A Predictive GIS Model for Mapping Potential Manganese Mineralization in Western Guangxi and Southeastern Yunnan, China[C]//The 23rd International Conference on Geoinformatics. Wuhan: CPGIS, 2015: 172-183. [20] 侯宗林, 薛友智, 黄金水, 等. 扬子地台周边锰矿[M]. 北京: 冶金工业出版社, 1997. Hou Zonglin, Xue Youzhi, Huang Jinshui,et al. Yang Zi Platform Surrounding Manganese Ore[M].Beijing: Metallurgical Industry Press, 1997. [21] 刘修国, 陈国良, 侯卫生, 等. 基于线框架模型的三维复杂地质体建模方法[J]. 地球科学, 2006, 31(5): 668-672. Liu Xiuguo, Chen Guoliang, Hou Weisheng, et al. 3D Complex Geological Entity Modeling Method Based on Line Frame Model[J].Earth Sciences, 2006, 31(5): 668-672. [22] Perrin M, Zhu B, Rainaud J F, et al. Knowledge-Driven Applications for Geological Modeling[J]. Journal of Petroleum Science and Engineering, 2005, 47(1/2): 89-104. [23] 王李管, 曾庆田, 贾明涛, 等. 复杂地质构造矿床三维可视化实体建模技术[J]. 金属矿山, 2006(12): 46-49. Wang Liguan, Zeng Qingtian, Jia Mingtao,et al.Technology of Three-Dimensional Visualized Solid Modeling for Mineral Deposit with Complicated Geological Structure[J]. Metal Mine, 2006(12): 46-49. [24] Roberto V,Chiaruttini C. Modeling and Reasoning Techniques in Geologic Interpretation[J]. IEEE Transactions on System, Man, and Cybernetics:Part A: Systems and Humans, 1999, 29(5): 460-473. [25] 程朋根, 王承瑞, 甘卫军, 等. 基于多层DEM 与QTPV 的混合数据模型及其在地质建模中的应用[J]. 吉林大学学报(地球科学版), 2005, 35(6): 806-811. Cheng Penggen, Wang Chengrui, Gan Weijun,et al.A Hybrid 3D Data Model Based on Multi-DEMs and QTPVs and Its Application in Geological Modeling[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(6): 806-811. [26] 程朋根, 刘少华, 王伟, 等. 三维地质模型构建方法的研究及应用[J]. 吉林大学学报(地球科学版), 2004, 34(2): 309-313. Cheng Penggen, Liu Shaohua, Wang Wei, et al. Study and Application of a New 3D Geological Model Construction Method[J].Journal of Jilin University (Earth Science Edition), 2004, 34(2): 309-313. [27] Zhang B Y, Wu X B, Wang L F, et al. The Preliminary Research of Feature-Based 3D Geological Modeling[C]//The 2nd Conference on Environmental Science and Information Application Technology (ESIAT'2010). Wuhan: IITA, 2010: 321-325. |
[1] | 胡大千, 初凤友, 姚杰. 中太平洋富钴锰结壳水羟锰矿研究[J]. J4, 2009, 39(4): 706-710. |
|