吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1060-1069.doi: 10.13278/j.cnki.jjuese.201704108

• 地质与资源 • 上一篇    下一篇

柴达木盆地涩北二号生物气田砂体产能分类评价

田敏1, 董春梅1, 林承焰1, 柴小颖2, 王丽娟2   

  1. 1. 中国石油大学地球科学与技术学院, 山东 青岛 266580;
    2. 中国石油青海油田勘探开发研究院, 甘肃 酒泉 736202
  • 收稿日期:2016-10-16 出版日期:2017-07-26 发布日期:2017-07-26
  • 作者简介:田敏(1984),男,博士研究生,主要从事储层地质学及油气藏描述方面研究,E-mail:tian_min@126.com
  • 基金资助:
    国家科技重大专项(2011ZX05009-003)

Productivity Evaluation Method of Single Sand Body Gas Reservoir in Sebei-2 Biogenic Gas Field, Qaidam Basin

Tian Min1, Dong Chunmei1, Lin Chengyan1, Chai Xiaoying2, Wang Lijuan2   

  1. 1. School of Geoscience, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. PetroChina Qinghai Oilfield Company, Jiuquan 736202, Gansu, China
  • Received:2016-10-16 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by the National Science and Technology Major Project (2011ZX05009-003)

摘要: 从柴达木盆地涩北二号气田砂泥薄互层滩坝相高孔-中低渗细粒储层特征出发,以气层产能为评价目标,在分析其内涵的基础上,选取孔隙度、渗透率、含气饱和度、有效厚度和泥质体积分数5个地质参数,厘清各参数的影响方式,并建立层次结构模型;以单砂体为基本单元,将消除生产压差影响的"视无阻流量"作为比较参数,采用相关分析结合层次分析法确定参数权重;结合现场生产实际从产能角度将气层分为3类。结果表明:气层分布特征与实际气井产能趋势吻合较好,气层产能分布不但受控于含气丰度、储层条件及原始地层压力,同时也受隔层质量及构造位置的影响。纵向上,由深至浅各气层组的气层数量逐渐增多,但高产能级别气层比例逐渐降低;气层组内部普遍具有气层下少上多,气层产能级别下高上低的特征。平面上,高产能级别气层较多分布在构造高部位即含气面中央部位,向构造边部逐渐过渡为低产能级别气层。通过评价气层产能潜力,可全面了解气层产能分布状况,便于优化调整部署方案。

关键词: 单砂体, 相关分析, 层次分析法, 产能评价, 产能分布, 柴达木盆地

Abstract: The fine-grained reservoir in Sebei-2 gas field is interbedded by the thin sand-shale beach and bar facies with the characteristics of high porosity and moderate-lower permeability. Aim to evaluate the productivity of gas reservoir, the authors analyzed the connotation of gas productivity. Five geological parameters were selected, including porosity, permeability, gas saturation, effective thickness,and clay content;and their influences on gas productivity were clarified. A single sand body was taken as the basic unit, and the "apparent open flow potential", which eliminates the effect of production pressure drop, was applied as a comparative parameter in combination with the correlation analysis and the analytic hierarchy process (AHP). The weight of each parameter was determined. The threshold values of gas reservoir classification criteria were defined with regards to the actual productive requirement; on which the gas reservoirs were divided into 3 categories. The predicted distributions of gas reservoir productivity are coincident with the trend of the actual gas reservoir productivity. The distributions of the gas reservoir productivity are controlled not only by the gas abundance, the reservoir condition, and the original formation pressure, but also the interlayer quality and structure position. Vertically, the quantity of gas reservoirs increases upwardly and gradually, while the proportion of high level productive gas reservoirs reduces gradually; more gas reservoirs occur in the top gas layers than at the bottom within one group of reservoirs, and the productivity level of gas reservoirs at the top is lower than the ones at the bottom. Horizontally, the high level productive gas reservoirs are distributed in the central and high structural section, and the productivity level reduces gradually and transits to the edge of the plane. The research results can provide some references for a fine adjusting development plan so as to improve the enhanced field gas recovery. By this evaluation, the distribution of gas reservoir productivity can be predicted;and this, in turn, can provide support for optimization of a development plan.

Key words: single sand body, correlation analysis, analytic hierarchy process (AHP), productivity evaluation of gas reservoir, distribution characteristics, Qaidam basin

中图分类号: 

  • TE122
[1] 金成志,杨双玲,舒萍,等.升平开发区火山岩储层孔隙结构特征与产能关系综合研究[J].大庆石油地质与开发,2007,26(2):38-41. Jin Chengzhi,Yang Shuangling,Shu Ping, et al. Comprehensive Research on Relationship Between Productivity and Pore Structure Characteristics of Volcanic Reservoir in Shengping Developing Area[J].Petroleum Geology & Oilfield Development in Daqing,2007,26(2):38-41.
[2] 朱广社,郭京哲,史涛,等.盐池地区长6储层特征及测井产能评价[J].石油地质与工程,2013,27(3):76-78. Zhu Guangshe,Guo Jingzhe,Shi Tao, et al.Characteristics Research and Logging Production Capacity Evaluation of Chang 6 Reservoir in Yanchi Area[J].Petroleum Geology and Engineering,2013,27(3):76-78.
[3] 毛志强,李进福.油气层产能预测方法及模型[J].石油学报, 2000, 21(5):58-61. Mao Zhiqiang,Li Jinfu.Method and Models for Productivity Prediction of Hydrocarbon Reservoirs[J].Acta Petrolei Sinica,2000,21(5):58-61.
[4] 尉亚民,汪天游,冯胜利,等.涩北气田气井产能试井分析及其在防砂效果评价中的应用[J].天然气工业,2009,29(7):82-84. Wei Yamin,Wang Tianyou,Feng Shengli,et al. A Well Test Analysis of Gas Well Productivity and Its Application in the Evaluation of Sand Control in the Sebei Gas Field[J]. Natural Gas Industry,2009,29(7):82-84.
[5] 葛百成,文政.利用测井资料预测油层自然产能的评价方法[J].大庆石油地质与开发,2003,22(1):54-56. Ge Baicheng,Wen Zheng. Evaluating and Predicting Method of Oil Layer's Natural Production Using Well Logging Data[J]. Petroleum Geology & Oilfield Development in Daqing, 2003,22(1):54-56.
[6] 邵维志,王志勇,张杰,等.利用测井资料评价低孔隙度低渗透率气层产能方法研究[J].测井技术,2008(6):541-545. Shao Weizhi,Wang Zhiyong,Zhang Jie, et al. Research on Productivity Evaluation in Low Porosity and Permeability Gas Reservoir by Logging Data[J].Well Logging Technology, 2008(6):541-545.
[7] 王泽明,段传丽.鄂尔多斯盆地苏里格气田苏20区块气层分布特征及分类评价[J].石油天然气学报,2009,31(5):186-189. Wang Zeming,Duan Chuanli. The Distributive Characteristics and Classification Evaluation of Gas Reservoirs of Block Su 20 in Sulige Gas Field of Ordos Basin[J].Journal of Oil and Gas Technology,2009,31(5):186-189.
[8] 成志刚,宋子齐,何羽飞,等.岩石物理相分类与致密储层含气层评价:以苏里格气田东区致密储层老井复查为例[J].油气地质与采收率,2013,20(5):23-27. Cheng Zhigang,Song Ziqi,He Yufei,et al.Classification of Petrophysical Facies and Gas Evaluation in Tight Reservoir:Case of Reevaluation of Old Wells in Eastern Sulige[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(5):23-27.
[9] 宋子齐,成志刚,孙迪,等.利用岩石物理相流动单元"甜点"筛选致密储层含气有利区:以苏里格气田东区为例[J].天然气工业,2013,33(1):41-48. Song Ziqi,Cheng Zhigang,Sun Di,et al. Identification of Tight Gas Play Fairways According to Flow Unit Sweet Spots of Petrophysical Facies:A Case Study from the Eastern Sulige Gas Field[J]. Natural Gas Industry Journal, 2013,33(1):41-48.
[10] 龚文,龚福华,梁晓伟,等.特低渗储层产能快速评价方法初探:以姬塬地区三叠系延长组长81油层为例[J].石油天然气学报,2012,34(10):114-117. Gong Wen,Gong Fuhua,Liang Xiaowei,et al.The Rapid Assessment of Productivity in Ultra-Low Permeability Reservoi:By Taking Chang 81 Reservoir of Yanchang Formation in Jiyuan Area for Example[J].Journal of Oil and Gas Technology,2012,34(10):114-117.
[11] 何海鹰,胡甜,赵健.基于AHP的岩质高边坡风险评估指标体系[J].中南大学学报(自然科学版),2012 (7):2861-2868. He Haiying,Hu Tian,Zhao Jian.Risk Assessment Indexes System of High Rock Slope Based on AHP[J].Journal of Central South University(Science and Technology),2012 (7):2861-2868.
[12] 金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型[J].水利学报,2004,3(3):65-70. Jin Juliang,Wei Yiming,Ding Jing.Fuzzy Comprehensive Evaluation Model Based on Improved Analytic Hierarchy Process[J].Journal of Hydraulic Engineering,2004,3(3):65-70.
[13] 韩利,梅强,陆玉梅,等.AHP-模糊综合评价方法的分析与研究[J].中国安全科学学报,2005,14(7):86-89. Han Li,Mei Qiang,Lu Yumei,et al.Analysis and Study on AHP-Fuzzy Comprehensive Evaluation[J].China Safety Science Journal,2005,14(7):86-89.
[14] Vaidya O S, Kumar S.Analytic Hierarchy Process:An Overview of Applications[J].European Journal of Operational Research,2006,169(1):1-29.
[15] Ma Fengshan, Wang J, Yuan Renmao, et al. Application of Analytical Hierarchy Process and Least-Squares Method for Landslide Susceptibility Assessment Along the Zhong-Wu Natural Gas Pipeline, China[J].Landslides,2013,10(4): 481-492.
[16] 金强,程付启,张水昌,等.柴达木盆地涩北生物气藏充注-散失过程及其富集规律研究[J].中国科学:D辑:地球科学,2007,37(增刊Ⅱ):29-35. Jin Qiang,Cheng Fuqi,Zhang Shuichang,et al. Qaidam Basin Sebei Gas Reservoir Filling-Loss Process and Study on Enrichment Regularity[J].Science in China:Series D:Earth Sciences,2007,37(Sup.Ⅱ):29-35.
[17] 邓津辉,史基安,王琪,等.柴达木盆地中东部地区储层特征与天然气成藏条件[J].吉林大学学报(地球科学版),2002,32(4):340-344. Deng Jinhui,Shi Ji'an,Wang Qi,et al. Characteristics of Reservoir and the Forming Condition of Gas Reservoir in Middle-East Area of Qaidam Basin[J].Journal of Jilin University(Earth Science Edition),2002,32(4):340-344.
[18] 万玉金,孙贺东,黄伟岗,等.涩北气田多层气藏储量动用程度分析[J].天然气工业,2009,29(7):58-60. Wan Yujin,Sun Hedong,Huang Weigang,et al. Reserves Producing Level Analysis of Multilayer Gas Reservoir in the Sebei Gas Filed[J].Natural Gas Industry,2009,29(7):58-60.
[19] 孙平,郭泽清,张林,等.柴达木盆地三湖地区生物气成藏机理与勘探对策[J].天然气地球科学,2013,24(3):494-504. Sun Ping,Guo Zeqing,Zhang Lin,et al. Biologic Gas Accumulation Mechanism and Exploration Strategy in Sanhu Area,Qaidam Basin[J].Natural Gas Geoscience,2013,24(3):494-504.
[20] 姜在兴,梁超,吴靖,等.含油气细粒沉积岩研究的几个问题[J].石油学报,2013,34(6):1031-1039. Jiang Zaixing,Liang Chao,Wu Jing,et al. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks[J].Acta Petrolei Sinica,2013,34(6):1031-1039.
[21] 骆杨,赵彦超,吕新华.东濮凹陷柳屯洼陷沙河街组三段上亚段盐间泥页岩储层特征[J].石油学报,2013,34(2):293-300. Luo Yang,Zhao Yanchao, Lü Xinhua.Characterization of the Upper Es3 Inter-Salt Shale Reservoir in Liutun Sag, Dongpu Depression[J].Acta Petrolei Sinica,2013,34(2):293-300.
[22] 孟万斌,吕正祥,唐宇,等.基于砂岩组构分类评价的储层渗透率预测[J].中国石油大学学报(自然科学版),2013,37(2):1-6. Meng Wanbin, Lü Zhengxiang,Tang Yu,et al.Reservoir Permeability Prediction Based on Sandstone Texture Classification[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013,37(2):1-6.
[23] 崔思华,朱华银,钟世敏.涩北气田储层应力敏感性及其对开发产能的影响[J].天然气地球科学,2008,19(1):141-144. Cui Sihua,Zhu Huayin,Zhong Shimin. Reservoir Properties Variation Characteristics Stress Sensitivity of Sebei Gas Field and Its Influence on Gas Field Development[J].Natural Gas Geoscience,2008,19(1):141-144.
[1] 方晶, 王福, 方雨婷, 潘隆, 李杨, 胡克, 齐乌云, 王中良. 钻孔岩心黏土混浊水电导率、黄铁矿、pH相关性分析及其在古沉积环境复原的应用:以渤海湾西岸平原DC01孔为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1154-1164.
[2] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[3] 巨银娟, 张小莉, 张永庶, 陈琰. 柴达木盆地昆北地区基岩储层裂缝特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1660-1671.
[4] 裴军令, 周在征, 李海兵, 孙知明. 中中新世以来阿尔金断裂走滑未造成柴达木盆地整体旋转[J]. 吉林大学学报(地球科学版), 2016, 46(1): 163-174.
[5] 朱超, 夏志远, 王传武, 宋光永, 魏学斌, 王鹏, 王海峰, 王波. 致密油储层甜点地震预测[J]. 吉林大学学报(地球科学版), 2015, 45(2): 602-610.
[6] 姜洪福,张世广. 复杂断块油田高分辨率层序地层学及砂体几何学特征--以海塔盆地贝尔凹陷呼和诺仁油田贝301区块南屯组二段为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1419-1431.
[7] 王大鹏,张乾,郭国林,蔡伊. 湖南麻阳砂岩自然铜矿床元素地球化学及其成因意义[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1177-1187.
[8] 路俊刚,姚宜同,王力,陈世加,汪立群,管俊亚,张焕旭,唐海评. 柴达木盆地跃进斜坡区油源判识与原油勘探方向[J]. 吉林大学学报(地球科学版), 2014, 44(3): 730-740.
[9] 高平,张延军,方静涛,张庆,李宏伟. 浅层岩土室内、外热物性测试的相关性[J]. 吉林大学学报(地球科学版), 2014, 44(1): 259-267.
[10] 于磊,邱殿明,刘莉,凌峰,李巍,胡广鑫,刘国才. 基于SPCA和AHP联合方法的滦河流域生态环境脆弱性变化规律分析[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1588-1594.
[11] 崔瀚文,姜琦刚,邢宇,徐驰,林楠. 32 a来气候扰动下中国沙质荒漠化动态变化[J]. 吉林大学学报(地球科学版), 2013, 43(2): 582-591.
[12] 郭继发, 崔铁军, 崔伟宏. 适宜尺度区间上的多尺度区域泥石流危险性评价[J]. J4, 2012, 42(1): 150-160.
[13] 高军平, 方小敏, 宋春晖, 李生喜, 薛建平. 青藏高原北部中-新生代构造-热事件:来自柴西碎屑磷灰石裂变径迹的制约[J]. J4, 2011, 41(5): 1466-1475.
[14] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响--来自构造节理分析的证据[J]. J4, 2011, 41(3): 724-734.
[15] 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!