吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 564-572.doi: 10.13278/j.cnki.jjuese.201702205

• 地质工程与环境工程 • 上一篇    下一篇

松辽盆地增强型地热系统开发选区评价

鲍新华1, 张宇1, 李野1, 吴永东1, 马丹1, 周广慧1,2   

  1. 1. 吉林大学环境与资源学院, 长春 130021;
    2. 通辽市水土保持局, 内蒙古 通辽 028000
  • 收稿日期:2016-05-09 出版日期:2017-03-26 发布日期:2017-03-26
  • 作者简介:鲍新华(1963),男,副教授,主要从事地热及水资源评价方面的研究,E-mail:bxinhua@163.com
  • 基金资助:
    国家技术研究发展计划("863"计划)项目(2012AA052801)

Evaluation of Development Selection for Enhanced Geothermal System in Songliao Basin

Bao Xinhua1, Zhang Yu1, Li Ye1, Wu Yongdong1, Ma Dan1, Zhou Guanghui1,2   

  1. 1. College of Environment and Resources, Jilin University, Changchun 130021, China;
    2. Soil and Water Conservation Bureau of Tongliao, Tongliao 028000, Inner Mongolia, China
  • Received:2016-05-09 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National High Technology Research and Development Program("863" Program) of China(2012AA052801)

摘要: 干热岩是一种新型清洁能源,其开发利用区的确定十分重要。笔者首先通过对松辽盆地热源、资源量、导热、聚热、地震活动5个方面资料的收集,提出了松辽盆地增强型地热系统开发选区适宜性评价方法;然后选取8项评价因子,利用ArcGIS 10.2平台将松辽盆地划分为26个评价单元,根据打分法和层次分析法(AHP)求取每个因子的权重;最后,对26个选区进行综合评价,将其分成适宜、较适宜、一般适宜、较不适宜和不适宜5个等级。结果表明:松辽盆地干热岩开发适宜区和较适宜区主要集中在盆地中部的大安—大庆一带,确定的适宜选区范围对今后干热岩开发工作具有一定指导作用。

关键词: 松辽盆地, 增强型地热系统, 评价因子, 层次分析法, 选区评价

Abstract: The hot dry rock (HDR) is a new clean energy, which is buried in the deep subsurface. It is important to locate the depth and location of HDR before exploration. Firstly,according to the data of heat flow rate, quantity of energy, thermal conductivity, poly heat, seismic activity, a new method is developed to locate the position of HDR in the Songliao basin. Secondly, 26 units are defined in the Songliao basin via the platform of ArcGis 10.2. Analytic hierarchy process and expert marking are applied to assemble decision matrix and evaluate the weights of each factors. Finally, 26 districts are classified into five levels:suitable, more suitable, general suitable, less suitable and not suitable. The results showed most suitable HDR area is mainly located in Daan-Daqing, the central depression of Songliao basin, which provides a base for the HDR development work in the future.

Key words: Songliao basin, enhanced geothermal systems, evaluation factor, analytic hierarchy process, selected area evaluation

中图分类号: 

  • P314
[1] 康玲, 王时龙, 李川. 增强型地热系统(EGS)的人工热储技术[J]. 地热能,2009(2):13-16. Kang Ling, Wang Shilong, Li Chuan. Reservoir Techology in Enhanced Geothermal Systems[J]. Geothermal Energy,2009(2):13-16.
[2] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2013, 30(32):42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Science and Technology Review,2013, 30(32):42-45.
[3] Brown D. The US Hot Dry Rock Program:20 Years of Experience in Reservoir Testing[C]//Proceedings of World Geothermal Congress. Florence:International Geothermal Association, 1995:2607-2611.
[4] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能开发热-水动力耦合过程[J]. 吉林大学学报(地球科学版),2014,44(5):1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin, China[J]. Journal of Jilin University(Earth Science Edition),2014, 44(5):1633-1646.
[5] 任战利. 中国北方沉积盆地构造热演化史研究[M]. 北京:石油工业出版社, 1999. Ren Zhanli. Tectonic Thermal Evolution of Sedimentary Basins in Northern China[M]. Beijing:Petroleum Industry Press,1999.
[6] 高瑞奇,蔡希源. 松辽盆地油气田形成条件与分布规律[M]. 北京:石油工业出版社,1997. Gao Ruiqi, Cai Xiyuan. Formation Conditions and Distribution of Oil and Gas Fields in the Songliao Basin[M]. Beijing:Petroleum Industry Press,1997.
[7] 陈井胜. 松辽盆地南部营城组火山岩成因[D]. 长春:吉林大学,2009. Chen Jingsheng. Formation of Volcanic Rocks in the Southern Part of the Songliao Basin[D]. Changchun:Jilin University,2009.
[8] 周庆华, 冯子辉, 门广田. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J]. 中国科学:A辑,2007, 37(2):177-188. Zhou Qinghua, Feng Zihui, Men Guangtian. In the Present Geothermal Characteristics of Xujiaweizi and Gas Generation Relation Research[J]. Chinese Science:Section A, 2007, 37(2):177-188.
[9] Guo Liangliang, Zhang Yanjun, Yu Ziwang, et al. Hot Dry Rock Geothermal Potential of the Xujiaweizi Area in Songliao Basin, Northeastern China[J]. Environmental Earth Sciences, 2016, 75(6):1-22.
[10] 鲍新华, 吴永东, 魏铭聪,等. EGS载热流体水岩作用对人工地热储层裂隙物性特征的影响[J]. 科技导报, 2014, 32(14):42-47. Bao Xinhua, Wu Yongdong, Wei Mingcong, et al. Impact of Water/CO2-Rock Interactions on Formation Physical Properties in EGS Science and Technology Review, 2014, 32(14):42-47.
[11] 朱焕来. 松辽盆地北部沉积盆地型地热资源研究[D]. 大庆:东北石油大学, 2011. Zhu Huanlai. Sedimentary Basin Geothermal Resources Research in the Northern Songliao Basin[D]. Daqing:Northeast Petroleum University, 2011.
[12] Wei G,Meng J,Du X,et al. Performance Analysis on a Hot Dry Rock Geothermal Resource Power Generation System Based on Kalina Cycle[J]. Energy Procedia,2015, 75:937-945.
[13] 袁益龙, 侯兆云, 雷宏武,等. 增强型地热系统井筒-储层耦合数值模拟分析[J]. 可再生能源, 2015, 33(3):421-427. Yuan Yilong, Hou Zhaoyun, Lei Hongwu,et al. Numerical Simulation Analysis of Wellbore-Reservoir Coupling of EGS[J]. Renewable Energy Resources, 2015, 33(3):421-427.
[14] 吴真玮, 曾昭发, 李静,等. 基于重磁场特征的松辽盆地基底岩性研究[J]. 地质与勘探, 2015, 51(5):939-945. Wu Zhenwei, Zeng Zhaofa, Li Jing,et al. Distribution of Basement Lithology in the Songliao Basin Derived from Gravity and Magnetic Anomalies[J]. Geology and Exploration, 2015, 51(5):939-945.
[15] 赵雪宇, 曾昭发, 吴真玮,等. 利用地球物理方法圈定松辽盆地干热岩靶区[J]. 地球物理学进展, 2015(6):2863-2869. Zhao Xueyu, Zeng Zhaofa, Wu Zhenwei,et al. Delineating the area of HDR in Songliao Basin Using Geophysical Methods[J]. Progress in Geophysic, 2015(6):2863-2869.
[16] 苏小四. 松辽盆地二氧化碳地质储存潜力与适宜性评价研究报告[R]. 长春:吉林大学, 2012. Su Xiaosi. Carbon Dioxide Geological Storage Potential and Suitability Evaluation in Songliao Basin[R]. Changchun:Jilin University,2012.
[17] 曹茂林. 层次分析法确定评价指标权重及Excel计算[J]. 江苏科技信息, 2012(2):39-40. Cao Maolin. Analytic Hierarchy Process to Determine the Weight of Evaluation Index and the Calculation of Excel[J]. Jiangsu Science and Technology Information, 2012(2):39-40.
[1] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2): 507-516.
[2] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[3] 田敏, 董春梅, 林承焰, 柴小颖, 王丽娟. 柴达木盆地涩北二号生物气田砂体产能分类评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1060-1069.
[4] 高翔, 刘志宏, 聂志阳, 姚勇, 贾卧, 王超, 宋健. 松辽盆地大庆长垣形成时间的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 74-83.
[5] 林承焰, 曹铮, 任丽华, 张昌盛, 范瑞峰, 王叶, 邢新亚, 马晓兰. 松辽盆地南部大情字井向斜区葡萄花油层石油富集规律及成藏模式[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1598-1610.
[6] 许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
[7] 刘财, 杨宝俊, 冯晅, 单玄龙, 田有, 刘洋, 鹿琪, 刘才华, 杨冬, 王世煜. 论油气资源的多元勘探[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1208-1220.
[8] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[9] 康健, 韦庆海, 周琳, 高研, 张永刚, 高峰. 利用地震台阵观测资料研究大庆地区深部构造[J]. 吉林大学学报(地球科学版), 2016, 46(3): 900-910.
[10] 修立君, 邵明礼, 唐华风, 董常春, 高有峰. 松辽盆地白垩系营城组火山岩孔缝单元类型和特征[J]. 吉林大学学报(地球科学版), 2016, 46(1): 11-22.
[11] 邱丹丹, 牛瑞卿, 赵艳南, 武雪玲. 斜坡单元支持下地震滑坡危险性区划—以芦山地震为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1470-1478.
[12] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[13] 曹文炅, 陈继良, 蒋方明. 工质变物性对EGS热开采过程影响的数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1180-1188.
[14] 陈彬滔, 潘树新, 梁苏娟, 张庆石, 刘彩燕, 王革. 陆相湖盆深水块体搬运体优质储层的主控因素以松辽盆地英台地区青山口组为例[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1002-1010.
[15] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!