吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1365-1382.doi: 10.13278/j.cnki.jjuese.201705104

• 地质与资源 • 上一篇    下一篇

延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例

门兰静1, 孙景贵2, 王好均1, 柴鹏2, 赵克强2, 古阿雷2, 刘城先1   

  1. 1. 长春工程学院勘查与测绘学院, 长春 130021;
    2. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2016-12-12 出版日期:2017-09-26 发布日期:2017-09-26
  • 通讯作者: 孙景贵(1961),男,教授,博士生导师,主要从事岩浆、热液矿床方面的研究,E-mail:sunjinggui@jlu.edu.cn E-mail:sunjinggui@jlu.edu.cn
  • 作者简介:门兰静(1982),女,讲师,博士,主要从事矿床地球化学方面的研究,E-mail:menjinglan4668872@126.com
  • 基金资助:
    吉林省科技厅科研基金项目(120160038,120140075);国家自然科学基金项目(40472050,40772052);吉林省教育厅"十三五"科学技术研究项目(120160014)

Origin and Evolution of Ore-Forming Fluids of Duhuangling and Jiusangou High-Sulfidation Gold Deposit in Yanbian

Men Lanjing1, Sun Jinggui2, Wang Haojun1, Chai Peng2, Zhao Keqiang2, Gu Alei2, Liu Chengxian1   

  1. 1. School of Prospecting and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China;
    2. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2016-12-12 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by Science Research Foundation of Jilin Province (120160038,120140075), National Natural Science Foundation of China (40472050, 40772052 ) and Science and Technology Research Project of Education Department, Jilin Province from the 13th National Five-Year Plan (120160014)

摘要: 杜荒岭和九三沟矿床是延边地区两个典型的浅成热液高硫化型金矿床, 两者距离不足10 km。本文运用显微测温、激光拉曼成分测试和稀有气体同位素对这两个矿床的蚀变岩和矿石中的石英内流体包裹体进行研究,以便揭示成矿流体的起源和演化过程。测温及拉曼测试结果表明:蚀变早期矿化阶段主要气体成分为CO2、N2的两相流体包裹体,发育少量高盐度(33.4%~48.1%)高温(410~470 ℃)的流体包裹体,其为深部斑岩成矿系统与后期浅成矿化流体叠加的产物;主成矿阶段均一温度为90~330 ℃,盐度为0.4%~44.9%,成分以H2O为主,含少量的CO2;富气相、富液相及含石盐子晶多相的流体包裹体共存,表明流体发生了沸腾作用,这些流体包裹体被捕获的深度为100~500 m,代表浅成矿化的主要流体。稀有气体同位素结果表明:3He/4He值为0.009 6~0.020 6 Ra,20Ne/22Ne、21Ne/22Ne值分别为9.734~9.987和0.030 9~0.040 6,40Ar/36Ar为1 302.4~4 433.6。上述研究结果表明,延边地区杜荒岭和九三沟金矿早期成矿流体为携带Au、Ag、Cu等成矿元素的高温、高氧化的岩浆气,主成矿阶段地壳流体的混入导致沸腾作用,晚期转以低温低盐度的大气水为主。

关键词: 流体包裹体, 稀有气体同位素, 杜荒岭金矿, 九三沟金矿, 延边

Abstract: Less than 10 km away from each other,Duhuangling and Jiusangou deposits are two typical high-sulfidation gold deposits in Yanbian. The fluid inclusions in quartz from alteration rocks and ores were analyzed by using micro thermometry, Raman microprobe,and noble gas isotope to reveal the origin and evolution of the ore-forming fluids. The fluid inclusions in the alteration stage and the early mineralization stage are mainly gas-liquid two-phase inclusions with major gases of CO2 and N2. The occurrence of a few high-salinity (33.4%-48.1%), high-temperature (410-460℃) fluid inclusions represent the mixing of a epithermal mineralization fluids with the porphyry system at depth. The fluid inclusions indicate that the homogenization temperature of the main mineralization stage is from 90℃ to 330℃, the salinity is 0.4%-44.9%,and the composition is dominated by H2O and a small amount of CO2. The coexistence of liquid-,vapor-rich inclusions and halite-bearing multiphase inclusions suggests a boiling event. These inclusions were trapped at depth between 100 and 500 m, representing the fluids related to the epithermal mineralization at Duhuangling and Jiusangou. The fluid inclusions in pyrite are characterized by the 3He/4He ratio of 0.009 6-0.020 6 Ra, 20Ne/22Ne ratio of 9.734-9.987, 21Ne/22Ne ratio of 0.030 9-0.040 6, and 40Ar/36Ar ratio of 1 302.4-4 433.6. Combined with the stable isotope data,these ratios suggest that the early ore-forming fluid was of high temperature and high oxidized magmatic gas carrying Au, Ag, Cu and other ore-forming elements,the mixing of the fluid in the crust led to the boiling process during the main ore-forming stage, and the liquid was dominated later by low temperature and low salinity atmospheric water.

Key words: fluid inclusion, noble gas isotope, Duhuangling gold deposit, Jiusangou gold deposit, Yanbian

中图分类号: 

  • P618.51
[1] Hedenquist J W, Arribas R A, Gonzalez U E. Exploration for Epithermal Gold Deposits[J]. Reviews in Economic Geology, 2000, 13:245-277.
[2] Chai P, Sun J G, Xing S W, et al. Early Cretaceous Arc Aagmatism and High-Sulphidation Epithermal Porphyry Cu-Au Mineralization in Yanbian Area, Northeast China:The Duhuangling Example[J]. International Geology Review, 2015, 57 (9/10):1267-1293.
[3] 张晓秋.吉林省汪清县九三沟金矿床地质特征和成因研究[D].长春:吉林大学,2014:1-65. Zhang Xiaoqiu. Geological Characteristics and Genesis of Jiusangou Gold Deposit, Wangqing, Jilin Province.[D].Changchun:Jilin University, 2014:1-65.
[4] 张晓秋,李碧乐. 吉林汪清九三沟金矿床矿床成因[J].世界地质,2014, 33(2):407-417. Zhang Xiaoqiu, Li Bile. Genesis of Jiusangou Gold Deposit of Wangqing,Jilin[J].Global Geology, 2014, 33(2):407-417.
[5] 周志宇,李翱鹏,张晓锦. 吉林汪清九三沟金矿地质特征[J]. 吉林地质, 2013, 32(4):51-53. Zhou Zhiyu, Li Aopeng, Zhang Xiaojin. Geological Features of Jiusangou Gold Deposit in Wangqing, Jilin Province[J]. Jilin Geology, 2013, 32(4):51-53.
[6] 王长兵,陈跃军,张宇峰,等. 吉林延边杜荒岭金矿流体包裹体特征与矿床成因[J]. 世界地质,2013,32(4):717-724. Wang Changbing, Chen Yuejun, Zhang Yufeng, et al. Characteristics of Fluid Inclusion and Implications of Ore Genesis of Duhuangling Gold Deposit, in Yanbian Area, Jilin[J]. Global Geology, 2013,32(4):717-724.
[7] 柴鹏,孙景贵,门兰静,等. 延边地区九三沟金矿床赋矿围岩锆石的U-Pb年龄与成岩成矿时代[J]. 岩石矿物学杂志,2012, 31(5):633-640. Chai Peng, Sun Jinggui, Men Lanjing, et al. U-Pb Dating of Zircons from Host Rocks of the Jiusangou Gold Deposit in Yanbian Area and Determination of Rock-Forming and Ore-Forming Epochs[J]. Acta Petrologica et Minerallogica, 2012, 31(5):633-640.
[8] 殷茜,卿敏,朴星海,等. 吉林延边杜荒岭金矿床成矿流体地球化学[J]. 黄金地质,2010,11(31):16-19. Yin Qian, Qing Min, Piao Xinghai, et al. Geohemical Characteristics of the Ore-Forming Fluids in Duhuangling Gold Deposit, Yanbian Area, Jilin Province[J]. Gold Geology, 2010,11(31):16-19.
[9] 赵羽军, 孙景贵,王清海,等.吉林延边地区浅成热液金(铜)矿床的40Ar/39Ar激光探针测年与成矿时代讨论[J]. 地学前缘,2010,17(2):156-169. Zhao Yunjun, Sun Jinggui, Wang Qinghai, et al. 40Ar/39Ar Laser Probe Dating and Discussion on Metallogenic Epoch of Epithemal Au-Cu Deposit in Yanbian Area of Jilin[J]. Earth Science Frontiers, 2010, 17(2):156-169.
[10] 赵海,崔学武,徐伦先.吉林汪清九三沟金矿床地质及同位素特征探讨[J]. 黄金科学技术,2008,16(1):48-51. Zhao Hai, Cui Xuewu, Xu Lunxian. Discussion on Geology and Isotope Characters of Jiusangou Gold Deposit, in Wangqing, Jilin Province[J]. Gold Science and Technology, 2008,16(1):48-51.
[11] 怀宝峰,王晓勇,宋丙剑,等. 吉林省杜荒岭金矿床地质特征及成矿规律浅析[J].黄金科学技术,2007,15(3):19-23. Huai Baofeng, Wang Xiaoyong, Song Bingjian, et al. Geological Features and Prospecting Direction of Duhuangling Gold Deposit, Jilin[J]. Gold Science and Technology, 2007,15(3):19-23.
[12] 崔学武,王晓勇,金同和,等. 吉东杜荒岭金矿区围岩蚀变与金矿化的关系[J]. 黄金地质, 2002, 8(2):36-39. Cui Xuewu, Wang Xiaoyong, Jin Tonghe, et al. Discussion on Relationship of the Wall Rock Alteration and the Mineralization of Gold Deposit in Duhuangling Gold Deposit Area, Eastern Jilin[J]. Gold Geology, 2002, 8(2):36-39.
[13] 孙景贵,门兰静,陈冬,等. 岩浆作用对岩浆热液金铜成矿制约的元素地球化学和锆石CL图像记录:以延边小西南岔富金铜矿床为例[J]. 矿物岩石,2009,29(3):43-52. Sun Jinggui, Men Lanjing, Chen Dong, et al. Constraints of Magmatism on the Ore-Forming Process of Magmatic Hydrothermal Gold-Rich Copper Deposits as Recorded from the Element Geochemistry and Zircon CL Image Features:A Case Study of the Xiaoxinancha Gold-Rich Copper Deposit, Yanbian, Jilin Province[J]. Journal of Mineralogy and Petrology, 2009, 29(3):43-52.
[14] 靳克. 延边地区中生代火山岩的岩石学和地球化学:对构造体制转换与岩石圈深部物质组成的制约[D].长春:吉林大学,2003:1-65. Jin Ke. Petrology and Geochemistry of Mesozoic Volcanic Rocks in Yanbian Area:Constraints on Transformation of Tectonic System and Composition of Lithosphere[D]. Changchun:Jilin University, 2003:1-65.
[15] 张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D]. 长春:吉林大学,2002:1-132. Zhang Yanbin. The Isotopic Geochronoligic Frame of Granitic Magmatism in Yanbian Area[D]. Changchun:Jilin University, 2002:1-132.
[16] Zhang Y B, Wu F Y, Wilde S A, et al.Zircon U-Pb Ages and Tectonic Implications of ‘Early Paleozoic’ Granitoids at Yanbian, Jilin Province, Northeast China[J]. Island Arc, 2004, 13(4):484-505.
[17] 孙景贵, 陈雷, 赵俊康,等. 延边小西南岔富金铜矿田燕山期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 矿床地质, 2008,27(3):319-328. Sun Jinggui, Chen Lei, Zhao Junkang, et al. SHRIMP U-Pb Dating of Zircons from Late Yanshanian Granitic Complex in Xiaoxinancha Gold-Rich Copper Orefield of Yanbian and Its Geological Implications[J].Mineral Deposits[J]. 2008, 27(3):319-328.
[18] 孟庆丽,周永昶,柴社力. 中国延边东部斑岩-热液脉型铜金矿床[M]. 长春:吉林科学技术出版社,2001. Meng Qingli, Zhou Yongchang, Chai Sheli. The Porphyry and Hydrothermal Lode Gold and Copper Deposits in the Eastern Yanbian Region of China[M].Changchun:Jilin Science and Technology Press, 2001.
[19] Hall D L. Freezing Point Depression of NaCl-KCl-H2O Solution[J]. Economic Geology, 1988, 83:197-202.
[20] Sterner S M. Synthetic Fluid Inclusion:V:Solubility Relations in the System NaCl-KCl-H2O Under Vapor-Saturated Conditions[J]. Geochim Cosmochim Acta, 1988, 52:989-1005.
[21] Ruggieri G, Lattanzi P, Luxopo S S, et al. Geology, Mineralogy, and Fluid Inclusion Data of the Furtei High-Sulfidation Gold Deposit, Sardinia, Italy[J]. Economic Geology, 1997, 92:1-19.
[22] Roedder E, Bodnar R J. Geologic Pressure Deter-minations from Fluid Inclusion Studies[J]. Annual Review of Earth and Planetary Science,1980, 8:263-301.
[23] Sourirajan S, Kennedy G C. The System H2O-NaCl at Elevated Temperatures and Pressures[J]. American Journal of Science, 1962, 260:115-141.
[24] Stefanova E, Driesner T, Zajacz Z, et al. Melt and Fluid Inclusions in Hydrothermal Veins:The Magmatic to Hydrothermal Evolution of the Elatsite Porphyry Cu-Au Deposit, Bulgaria[J]. Economic Geology, 2014, 109:1359-1381.
[25] Nagao K, Ogata A, Miura Y N, et al. ArIsotope Analysis for K-Ar Dating Using Tow Modified-VG5400 Mass SpectrometersI:Isotope Dilution Method[J].Journal of the Mass Spectrometry Society of Japan, 1996,44(1):39-61.
[26] Matsuda J, Matsumoto T, Sumino H, et al. The 3He/4He Ratio of the New Internal He Standard of Japan (HESJ)[J]. Geochemical Journal, 2002,36 (2):191-195.
[27] Schlosser P, Winckler G. Noble Gases in Ocean Water and Sediments[J].Reviews in Mineralogy and Geochemistry, 2002, 47 (1):701-730.
[28] Stuart F, Turner G,Taylor R. He/ArIsotope Syste-matics of Fluid Inclusions:Resolving Mantle and Crustal Contributions to Hydrothermal Fluid[J]. Noble Gas Geochemistry and Cosmochemistry, 1994, 3(8):261-277.
[29] Stuart F M, Burnard P G, Taylor R P, et al. Resolving Mantle and Crustal Contributions to Ancient Hydrothermal Fluids:He-Ar Isotopes in Fluid Inclusions from Dae Hwa W -Mo Mineralization, South. Korea[J]. Geochimica et Cosmochimica Acta, 1995, 59 (22):4663-4673.
[30] Kendrick M A, Burgess R, Pattrick R A D, et al. FluidInclusion Noble Gas and Halogen Evidence on the Origin of Cu-Porphyry Mineralizing Fluids[J]. Geochimica et Cosmochimica Acta, 2001, 65 (16):2651-2668.
[31] Stoffregen R E. Genesis of Acid-Sulfate Alteration and Au-Cu-Ag Mineralization at Summitville, Colorado[J]. Economic Geology, 1987, 82:1575-1591.
[32] 赵珊茸,边秋娟,凌其聪. 结晶学及矿物学[M]. 北京:高等教育出版社,2004. Zhao Shanrong, Bian Qiujuan, Ling Qicong. Crys-Tallography and Mineralogy[M]. Beijing:Higher Education Press, 2004.
[33] Hedenquist J W, Henley R W. The Importance of CO2 on Freezing Point Measurements of Fluid Inclusions:Evidence from Active Geothermal Systems and Implications for Epithermal Ore Deposition[J].Economic Geology, 1985, 80:1379-1406.
[34] Crawford M L. Phase Quilibria in Aqueous Fluid Inclusions[J]. Mineralogical Association of Canada Short Course, 1981, 6:75-97.
[35] 陈雷,孙景贵,赵俊康,等. 延边五凤五星山金(银) 矿床的流体包裹体特征及成因模式[J]. 吉林大学学报(地球科学版), 2008, 38(4):566-575. Chen Lei, Sun Jinggui, Zhao Junkang, et al. Characteristics of Fluid Inclusions and Genetic Model of Wufeng-Wuxingshan Gold (Silver) Deposit, Yanbian[J]. Journal of Jilin University(Earth Science Edition),2008, 38(4):566-575.
[36] Arribas Jr A. Characteristics of High-Sulfidation Epithermal Deposits, and Their Relation to Magmatic Fluid[J]. Mineralogical Association of Canada Short Course, 1995,23:419-454.
[37] Chouinard A, Williams-Jones A E, Leonardson R W. Geology and Genesis of the Multistage High-Sulfidation Epithermal Pascua Au-Ag-Cu Deposit, Chile and Argentina[J]. Economic Geology, 2005, 100:463-490.
[38] Hedenquist J W, Matsuhisa Y, Izawa E. Geology, Geochemistry and Origin of High-Sulfidation Cu-Au Mineralization in the Nansatsu District, Japan[J]. Economic Geology, 1994, 89:1-30.
[39] Stoffregen R E. Genesis of Acid-Sulfate Alteration and Au-Cu-Ag Mineralization at Summitville, Colorado[J]. Economic Geology, 1987, 82:1575-1591.
[40] Vennemann T W, Muntean J L, Kesler S E,et al. Stable Isotope Evidence for Magmatic Fluids in the Pueblo Viejo Epithermal Silica-Alunite Au-Ag Deposit, Dominican Republic[J]. Economic Geology,1993, 88:55-71.
[41] Berger B R, Henley R W. Magmatic-Vapor Expan-sion and the Formation of High-Sulfidation Gold Deposits:Structural Controls on Hydrothermal Alteration and Ore Mineralization[J].Ore Geology Reviews, 2011, 39:75-90.
[42] Audétat A, Günther D, Heinrich C A. Formation of A Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions[J]. Science, 1998, 279:2091-2094.
[43] Audétat A, Pettke T, Heinrich C A, et al. The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions[J]. Economic Geology, 2008, 103:877-908.
[44] Ulrich T, Gunther D, Heinrich C A. Gold Concen-trations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits[J]. Nature, 1999, 399:676-679.
[45] Williams-Jones A E,Heinrich C A. Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits[J]. Economic Geology, 2005, 100:1287-1312.
[46] 韩润生,李波,倪培,等. 闪锌矿流体包裹体显微红外测温及其矿床成因意义:以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版),2016, 46(1):91-104. Han Runsheng, Li Bo, Ni Pei, et al. Infrared Micro-Thermometry of Fluid Inclusion in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit, Yunnan Province[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1):91-104.
[47] Migdisov A A, Williams-Jones A E, Suleimenov O M. Solubility of Chlorargyrite (AgCl) in Water Vapor at Elevated Temperatures and Pressures[J]. Geochimica et Cosmochimica Acta, 1999, 63:3817-3827.
[48] Archibald S, Migdisov A A, Williams-Jones A E. The Stability of Au-Chloride Complexes in Water Vapor at Elevated Temperatures and Pressures[J]. Geochimica et Cosmochimica Acta, 2001, 65:4413-4423.
[49] Archibald S M, Migdisov A A, Williams-Jones A E. An Experimental Study of the Stability of Copper Chloride Complexes in Water Vapor at Elevated Temperatures and Pressure[J]. Geochimica et Cosmochimica Acta, 2002, 66:1611-1619.
[50] Migdisov A, Williams-Jones A E. A Predictive Model for Transport of Silver Chloride by Aqueous Vapor in Ore-Forming Magmatic-Hydrothermal Systems[J]. Geochimica et Cosmochimica Actamica,2013,104:123-135.
[51] Hurtig N, Williams-Jones A E. An Experimental Study of the Transport of Gold Through Hydration of AuCl in Aqueous Vapour and Vapour-Like Fluids[J]. Geochimica et Cosmochimica Acta, 2014, 127:305-325.
[52] Zezin D, Migdisov A A, Williams-Jones A E. The Solubility of Gold in H2O-H2S Vapour at Elevated Temperature and Pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75:5140-5153.
[53] Crerar D A, Barnes H L. Ore Solution Chemistry V, Solubilities of Chalcopyrite and Chalcocite Assemblages in Hydrothermal Solution at 200℃ to 350℃[J]. Economic Geology, 1976, 71:772-794.
[54] Gammons C H, Barnes H L. The Solubility of Ag2S in Near-Neutral Aqueous Sulfide Solutions at 25 to 300℃[J]. Geochimica et Cosmochimica Acta, 1989, 53:279-290.
[55] Mountain B W, Seward T M. Hydrosulfide/Sulfide Complexes of Copper:I:Experimental Confirmation of the Stoichiometry and Stability of Cu (HS)2-to Elevated Temperatures[J]. Geochimica et Cosmochimica Acta, 2003, 67:3005-3014.
[56] Stefánsson A, Seward T M. Gold(I) Complexing in Aqueous Sulphide Solutions to 500℃ at 500 Bar[J]. Geochimica et Cosmochimica Acta, 2004, 68:4121-4143.
[57] Williams-Jones A E, Bowell RJ, Migdisov A A. Gold in Solution[J]. Elements, 2009, 5:281-287.
[58] Roedder E. Fluid Inclusions Reviews in Mineralogy[J]. Mineral Society of America, 1984, 12:644.
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[2] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[3] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[4] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[5] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[6] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[7] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[8] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[9] 张延军, 孙丰月, 李碧乐, 李良, 陈扬. 青海湟中县三岔金矿流体包裹体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1342-1353.
[10] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
[11] 吴海枝, 韩润生, 吴鹏. 楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 398-411.
[12] 王可勇, 付丽娟, 韦烈民, 王志高. 辽宁榛子沟铅锌矿床热液叠加成矿作用特征及成矿流体来源[J]. 吉林大学学报(地球科学版), 2016, 46(1): 80-90.
[13] 韩润生, 李波, 倪培, 邱文龙, 王旭东, 王天刚. 闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版), 2016, 46(1): 91-104.
[14] 张志辉, 张达, 狄永军, 李兴俭, 阙朝阳, 马先平, 杜泽忠. 安徽铜陵焦冲金矿床成矿流体特征及成矿机制[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1657-1666.
[15] 丁清峰, 付宇, 吴昌志, 董莲慧, 屈迅, 曹长胜, 夏明毅, 孙洪涛. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!