吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 709-726.doi: 10.13278/j.cnki.jjuese.20180266

• 地质与资源 • 上一篇    下一篇

内蒙古红山子地区新太古代变质侵入岩年代学及地球化学特征

王春光1, 董晓杰1, 徐仲元1, 任云伟2, 王文龙2, 陈煜嵩1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 中国地质调查局天津地质调查中心, 天津 300170
  • 收稿日期:2018-10-19 出版日期:2019-06-03 发布日期:2019-06-03
  • 通讯作者: 董晓杰(1984-),男,讲师,博士,主要从事构造地质学及前寒武纪地质学方面的研究,E-mail:dxj@jlu.edu.cn E-mail:dxj@jlu.edu.cn
  • 作者简介:王春光(1993-),男,硕士研究生,主要从事构造地质学方面的研究,E-mail:1820449593@qq.com
  • 基金资助:
    国家自然科学基金项目(41872194);中国地质调查局地质调查项目(1212010510515)

Chronology and Geochemistry of Neoarchean Metamorphic Intrusive Rocks in Hongshanzi, Inner Mongolia

Wang Chunguang1, Dong Xiaojie1, Xu Zhongyuan1, Ren Yunwei2, Wang Wenlong2, Chen Yusong1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Tianjin Center, China Geological Survey, Tianjin 300170, China
  • Received:2018-10-19 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Nature Science Foundation of China(41872194) and Project of China Geological Survey(1212010510515)

摘要: 华北克拉通西部陆块阴山地块花岗-绿岩带中出露的花岗岩类型比较复杂,研究其类型、成因及其与绿岩带之间的联系,对于探讨花岗-绿岩带的形成和演化有重要意义。本文对内蒙古三合明铁矿西侧红山子地区的花岗-绿岩带进行了研究。其不仅包含有大量的变质科马提岩、科马提质玄武岩和拉斑玄武岩等绿岩带的表壳岩,而且发育着多种变质侵入岩。研究表明,区内与绿岩带相关的侵入岩主要有3种,即变质英云闪长岩、变质花岗闪长岩、变质花岗岩,本文对其中的变质英云闪长岩和变质花岗岩两种岩石进行了地球化学和锆石测年的研究。变质英云闪长岩是一套富铝、低钾、贫铁镁和稀土元素强烈分异的太古宙高铝型TTG岩,SHRIMP锆石U-Pb测年为(2 534±7) Ma(MSWD=1.3),与研究区南部的赞岐岩和TTG的年龄相同;而变质花岗岩具有高硅、富碱,低铁、镁、钛、锰的特点,是一套钙碱性的过铝质岩石,SHRIMP锆石U-Pb测年为(2 509±7) Ma(MSWD=1.5),野外地质现象表明变质花岗岩明显地侵入到区内的绿岩地层和变质英云闪长岩之中。研究发现变质英云闪长岩形成于板块俯冲时TTG岩系岩浆弧构造环境,而变质花岗岩成因则可能与加厚地壳中变沉积岩的熔融有关。

关键词: 阴山地块, 花岗-绿岩带, 变质侵入岩, 锆石U-Pb年代学, 地球化学

Abstract: A set of complicated granites are exposed in the Yinshan granite-greenstone belt of the western block of North China craton. The research on the types, genesis and relationship with greenstone belt is of great significance to discuss the formation and evolution of the granite-greenstone belt. The authors studied the granite greenstone belt in the red mountain area in the west side of the Sanheming iron deposit in Inner Mongolia. The greenstone belts contain not only a large amount of epi-crust rocks such as metamorphic Komatite, Komatite basalt, and tholeiite, but also a variety of metamorphic intrusive rocks. The study shows that there are mainly three types of intrusive rocks related to the greenstone belt in this area, namely metamorphic quartz diorite, metamorphic granite diorite, and metamorphic granite. The geochemistry and zircon dating of metamorphic quartz diorite and metamorphic granite were obtained in this study. Metamorphic quartz diorite is Archean high-alumina TTG rocks, with higher aluminum and potassium, lower magnesium, and strong differentiation of REEs. The SHRIMP zircon U-Pb age is 2534±7 Ma (MSWD=1.3), which is cotemporary with Sanukite and TTG in the southern part of the study area. The metamorphic granites belong chemically to a calcalkaline per-aluminous series, rich in silica and alkali, and low in iron, magnesium, titanium and manganese. The SHRIMP zircon U-Pb age is 2509±7 Ma (MSWD=1.5). The field geological phenomena show that metamorphic granite obviously intruded into greenstone strata and metamorphic quartz diorite. The study found that the metamorphic quartz-dolomite diorite was formed in TTG magmatic arc tectonic environment during plate subduction; while metamorphic granite genesis may be related to the melting of thick crust metasedimentary rocks.

Key words: Yinshan block, granite-greenstone belt, metamorphic intrusive rocks, zircon U-Pb chronology, geochemistry

中图分类号: 

  • P588.12
[1] Anhaeusser C R.Archaean Greenstone Belts and Associated Granitic Rocks-A Review[J].Journal of African Earth Sciences,2014,100:684-732.
[2] 张旗,王焰,钱青,等.晚太古代Sanukite(赞岐岩)与地球早期演化[J].岩石学报,2004,20(6):54-61. Zhang Qi, Wang Yan, Qian Qing, et al.Sanukite of Late Archaean and Erarly Earth Evolution[J].Acta Petrologica Sinicia,2004,20(6):54-61.
[3] Almeida J D C, Dall'Agnol R, Oliveira M A D,et al. Zircon Geochronology, Geochemistry and Origin of the TTG Suites of the Rio Maria Granite-Greenstone Terrane:Implications for the Growth of the Archean Crust of the Carajás Province, Brazil[J]. Precambrian Research, 2011,187(1):201-221.
[4] Zhao G C,Wilde S A,Cawood P A,et al.Archean Blocks and Their Houndaries in the North China Craton:Lithological,Geochemical,Structural and P-T Path Constraints and Tectonic Evolution[J].Precambrian Research,2001,107(1):45-73.
[5] Zhao G C,Sun M,Wilde S A. Major Tectonic Units of the North China Graton and Their Paleoproterozoic Assembly[J].Science in China:Series D:Earth Sciences,2003,46(1/2):23-38.
[6] Zhao G C,Sun M,Wilde S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005,136(2):177-202.
[7] 吴和源,赵宗举,汪建国,等.华北克拉通北缘寒武系层序地层划分[J].吉林大学学报(地球科学版),2018,48(6):1609-1624. Wu Heyuan,Zhao Zongju,Wang Jianguo,et al.Cambrian Sequence Stratigraphic Framework in Northern Margin of North China Craton[J]. Journal of Jilin University (Earth Science Edition),2018,48(6):1609-1624.
[8] 王师捷,徐仲元,董晓杰,等.华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J].吉林大学学报(地球科学版),2017,47(5):1442-1457. Wang Shijie,Xu Zhongyuan,Dong Xiaojie,et al.Permian Tectonic Evolution of the Middle Section of Northern Margin of the North China Plate:Constra Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks[J].Journal of Jilin University (Earth Science Edition),2017,47(5):1442-1457.
[9] 张维杰,李龙,耿明山.内蒙古固阳地区新太古代侵入岩的岩石特征及时代[J].地球科学:中国地质大学学报,2000,25(3):221-226. Zhang Weijie,Li Long,Geng Mingshan. Petrology and Dating of Neoarchaean Intrusive Rocks from Guying Area,Inner Mongolia[J].Earth Science:Journal of China University of Geosciences,2000,25(3):221-226.
[10] 简平,张旗,刘敦一,等.内蒙古固阳晚太古代赞岐岩(Sanukite):角闪花岗岩的SHRIMP定年及其意义[J].岩石学报,2005,21(1):153-159. Jian Ping,Zhang Qi,Liu Dunyi,et al. SHRIMP Dating and Geological Significance of Late Achaean High-Mg Diorite (Sanukite) and Hormblende-Granite at Guyang of Inner Mongolia[J]. Acta Petrologica Sinca,2005,21(1):151-159.
[11] Zhao G C,Cawood P A,Wilde S A,et al.Amalgamation of the North China Craton:Key Issues and Discussion[J]. Precambrian Research,2012,222/223:55-76.
[12] Ma X D,Guo J H,Liu F,et al.Zircon U-Pb Ages,Trace Elements and Nd-Hf Isotopic Geochemistry of Guyang Sanukitoids and Related Rocks:Implicationa for the Archean Crustal Evolution of the Yinshan Block,North China Craton[J]. Precambrian Research,2013,230:61-78.
[13] 陈亮.固阳绿岩地体的地球化学和年代学[R].北京:中国科学院地质与物理研究所,2007. Chen Liang.Geochemistry and Chronology of the Guyang Greenstonebelt[R].Beijing:Institute of Geology and Geophysics,Chinese Academy of Sciences,2007.
[14] 刘利,张连昌,代堰锫,等.内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义[J].岩石学报,2012,28(11):3623-3637. Liu Li,Zhang Lianchang, Dai Yanpei,et al.Geochemical Characteristics and Geological Significance of Sanheming BIF Type Iron Ore in Guyang Greenstone Belt,Inner Mongolia[J].Acta Petrologica Sinica,2012,28(11):3623-3637.
[15] 李树勋,刘喜山,张履桥.内蒙古色尔腾山地区花岗岩-绿岩的地质特征[J].长春地质学院学报,1987(增刊):81-102. Li Shuxun,Liu Xishan,Zhang Lüqiao.Geological Characteristics of Granite-Greenstone in the Seertengshan Area, Inner Mongolia[J].Journal of Changchun University of Earth Science,1987(Sup.):81-102.
[16] Jian P, Kroner A, Windley B F, et al. Episodic Mantle Melting-Crustal Reworking in the Late Neoarchean of the Northwestern North China Craton:Zircon Ages of Magmatic and Metamorphic Rocks from the Yinshan Block[J]. Precamrian Research,2012,222/223:230-254.
[17] 马旭东,郭敬辉,陈亮,等.内蒙固阳晚太古代绿岩带中科马提岩的Re-Os同位素研究[J].科学通报,2010,55(19):1900-1907. Ma Xudong,Guo Jinghui,Chen Liang,et al.Re-Os Isotopic Constraint to the Age of in Komatiites in the Neoarchean Guyang Greenstone Belt,North China Craton[J]. Chinese Science Bulletin,2010,55(19):1900-1907.
[18] 徐仲元.内蒙古1:5万红山子幅区域地质调查报告[D].长春:吉林大学,2009. Xu Zhongyuan. Regional Geological Survey of 1:50000 Hongshan Sub Area in Inner Mongolia[D].Changchun:Jilin University,2009.
[19] Wiliams I S.U-Th-Pb Geochronology by Ion Microprobe Applications of Microanalytical Techniques to Understanding Mineraling Processes[J]. Reviews in Geology,1998,7:1-35.
[20] Nasdala L,Hofmeister W,Norberg N,et al.Zircon M257-a Homogenous Natural Refererce Material for the Ionmi Croprobe U-Pb Analysis of Zircon[J].Geostandards and Geoanalytical Research,2008,32(3):247-265.
[21] Black L P,Kamo S L,ALLen C M,et al.A New Zircon Standard for Phanerozoic U-Pb Geochronology[J].Chemical Geology,2003,200(1/2):155-170.
[22] Cumming G L,Richarda J R.Ore Lead Isotope Ratios in a Continuously Changing Earth[J].Earth Planet,1975,28(2):155-171.
[23] Luding K R.Users Manual for Isoplot/Ex (Rev2.49):A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronological Center Special Publication,2001.
[24] 吴鸣谦,左梦璐,张德会,等.TTG岩套的成因及其形成环境[J].地质论评,2014,60(3):503-514. Wu Mingqian,Zuo Menglu,Zhang Dehui,et al.Genesis and Diagenetic Environment of TTG Suite[J]. Geological Review,2014,60(3):503-514.
[25] 吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220. Wu Fuyaun,Li Xianhua,Zheng Yongfei,et al. Lu-Hf Isotopic Systematics and Their Applications in Petrology[J].Acta Petroloica Sinica,2007,23(2):185-220.
[26] 张旗,许继峰,王焰,等.埃达克岩的多样性[J].地质通报,2004,23(9/10):959-965. Zhang Qi,Xu Jifeng,Wang Yan,et al.Diversity of Adakite[J]. Geological Bulletin of China,2004,23(9/10):959-965.
[27] 张华锋,王浩铮,豆敬兆,等.华北克拉通怀安陆块新太古代低铝和高铝TTG片麻岩的地球化学特征与成因[J].岩石学报,2015,31(6):1518-1534. Zhang Huafeng,Wang Haozheng,Dou Jingzhao,et al.Geochemistry and Genesis of the Late Archean Low-Al and High-Al TTGs form the Huai'an Terrane,North China Craton[J].Acta Petroloica Sinica,2015,31(6):1518-1534.
[28] 薛怀民,金振民,董树文.TTG岩石组合及其成因的实验模拟[J].地质科技情报,1999,18(3):21-24,29. Xue Huaimin,Jin Zhenmin,Dong Shuwen.TTG Rocks and Experimental Model for their Origin[J].Geological Science and Technology Information,1999,18(3):21-24,29.
[29] 张永清,张有宽,郑宝军,等.内蒙古中部小南沟-明星沟地区新太古代TTG岩系及其地质意义[J].岩石学报,2006,22(11):2762-2768. Zhang Yongqing,Zhang Youkuan,Zheng Baojun,et al.Geological Character and Significance of Adakite and TTG in Xiaonanguo-Mingxinggou District in Central of Inner Mongolia[J]. Acta Petrologica Sinica,2006,22(11):2762-2768.
[30] Cond ie K C. Plate Tectonics and Crustal Evolution[M]. New York:Pergamon,1982.
[31] Pitcher W S.Granite Type and Tectonic Environment[C]//Hsu K J.Mountain Building Processes.Acad:London Press,1982:19-40.
[32] Pitcher W S.The Nature and Origin of Granite[M].London:Champman & Hall,1993.
[33] Maniar P D,Piccoli P M.Tectonic Discrimination of granitoids[J].Geogical Society of America Bulletin,1989,101:635-643.
[34] Condie K C,Benn K.Archean Geodymamics:Similar to Different from Modern Geodynamics[J].Washington Dc American Geophysical Union Geophysical Monograph,2006,164:47-59.
[35] 邓晋福, 罗照华, 苏尚国, 等. 岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004. Deng Jinfu, Luo Zhaohua,Su Shangguo,et al.Petrogenesis,Tectonic Environment and Mineralization[M].Beijing:Geological Publishing House,2004.
[36] 张旗,翟明国.太古宙TTG岩石是什么含义?[J].岩石学报,2012,28(11):3446-3456. Zhang Qi,Zhai Mingguo.What is the Archean TTG?[J].Acta Petrologica Sinica,2012,28(11):3446-3456.
[37] Taylor S P,Mclenman S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell,1985.
[38] Sun S S,Mcdonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society of London Special Publications,1989,42:313-345.
[39] Weaver S D,Bradshaw J D,Laird M G.Geochemistry of Cambrian Volcanics of the Bowers Supergroup and Implications for the Early Palaeozoic Ectonic Evolution of Northern Victoria Land[J].Antarctica Earth and Planetary Science Letters,1984,68(1):128-140.
[40] 路凤香,桑隆康.岩石学[M].北京:地质出版社,2002. Lu Fengxiang,Sang Longkang.Petrology[M].Beijing:Geological Publishing House,2002.
[41] Pitcher W S.Granite Type and Tectonic Environment[M].London:Mountain Building Processes,1982.
[42] Pearce J A,Harris N B W,Tindle A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rock[J].Journal of Petrology,1984,25(4):956-983.
[43] Sylvester P J.Post-Collisional Strongly Peraluminous Granites[J].Lithos,1998,45(1/2/3/4):29-44.
[44] 石强,董晓杰,徐仲元,等.华北地台北缘集宁地区古元古代片麻状石榴花岗岩的深熔成因及地质意义[J].岩石学报,2018,34(9):2754-2772. Shi Qiang,Dong Xiaojie,Xu Zhongyuan,et al.Anatectic Origin and Geological Significance of the Paleoproterozoic Gneissic Garnet Granite in the Jining Area,Northern Margin of the North China Craton[J].Acta Petrologica Sinica,2018,34(9):2754-2772.
[45] Zhai Mingguo,Liu Wenjun. Palaeoproterozoic Tectonic History of the North China Craton:A Review[J].Precambrian Research,2003,122(1):183-199.
[46] 沈其韩,耿元生,宋会侠.华北克拉通的组成及其变质演化[J].地球学报,2016,37(4):387-406. Shen Qihan,Gen Yuansheng,Song Huixia.Evolution of the Metamorphic Basement of the North China Craton[J].Acta Geosicientica Sinica,2016,37(4):387-406.
[47] Shirey S B,Hanson G N.Mantle-Derived Archaeanmonozodiorites and Trachyandesites[J].Nature,1984,310:222-224.
[48] Stern R A,Hanson G N,Shirey S B.Petrogenesis of Mantle-Derived,LILE-Enriched Archean Monzodiorites and Trachyandesites(Sanukitoids) in Southwestern Superior Province[J].Canadian Journalof Earth Science,1989,26(9):1688-1712.
[49] Smithies R H,Chamption D C.The Archaean High-Mg Dioritesuite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth[J].Journal of Petrology,2000,41(12):1653-1671.
[50] Stevenson R,Henry P,Gariapy C.Assimilation Fractionalcrystallization Origin of Archaean Sanukitoid Suites:Western Superior Province,Canada[J].Precambrian Research,1999,96(1/2):83-99.
[51] Kamber B S,Ewart A,Collerson K D,et al.Fluid Mobile Traceelement Constraints on the Role of Slab Melting and IMPLICATIONS for Archaean Crustal Growth Models[J].Contributions to Mineralogy and Petrology,2002,144(1):38-56.
[52] Moyen J F,Martin H,Jayananda M,et al.Late Archaean Granites:A Typology Based on the Dharwar Craton (India)[J].Precambrian Research,2003,127(1/2/3):103-123.
[53] Halla J.Late Archean High-Mg Granitoids (Sanukitoids) in the Southern Karelian Domain,Eastern Finland:Pb and Nd Isotopicconstraints on Crust-Mantle Interactions[J].Lithos,2005,79(1/2):161-178.
[54] Polat A,Herzberg C,Münker C,et al.Geochemical and Petrological Evidence for a Suprasub Duction Zone Origin of Neoarchean(ca.2.5Ga) Peridotites,Central Orogenic Belt,North China Craton[J].Geological Society of America Bulletin,2006,118(7/8):771-784.
[55] Martin H,Smithies R H,Rapp R,et al.An Overview of Adakite,Tonalite-Trondhjemite-Granodiorite(TTG),and Sanukitoid:Relationships and Some Implications for Crustal Evolution[J]. Lithos,2005,79(1/2):1-24.
[56] Martin H,Moyen J F,Rapp R. The Sanukitoid Series:Magmatism at the Archaean-Proterozoic Transition[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,2010,100(1/2):15-33.
[57] Rapp R P,Shimizu N,Norman M D,et al.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimentalconstraints at 3.8GPa[J]. Chemical Geology,1999,160(4):335-356.
[58] Ma X D,Fan H R,Santosh M,et al.Geochemistry and Zircon U-Pb Chronology of Charnockites in the Yinshan Block,North China Craton:Tectonic Evolution Involving Neoarchaean Ridgesub Duction[J].International Geology Review,2013,55(13):1688-1704.
[59] 马旭东,范宏瑞,郭敬辉.阴山地块晚太古代岩浆作用、变质作用对地壳演化及BIF成因的启示[J].岩石学报,2013, 29(7):2329-2339. Ma Xudong,Fan Hongrui,Guo Jinghui.Neoarchean Magmatism,Metamorphism in the Yinshan Block:Implicatio for the Genesis of BIF and Crustal Evolution[J].Acta Petrologica Sinica,2013,29(7):2329-2339.
[1] 于介禄, 于介江, 杨万志, 张元厚, 郭秀玮. 东天山觉罗塔格带东段早志留世中酸性侵入岩的年代学、地球化学及构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(3): 690-708.
[2] 单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报(地球科学版), 2019, 49(3): 662-672.
[3] 鲁倩, 孙景贵, 安久海, 韩吉龙, 褚小磊. 吉林敦化松江河地区中生代似斑状花岗岩成因和形成环境:元素、Hf同位素和锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2019, 49(3): 673-689.
[4] 单承恒, 王政, 史长浩. 基于综合等级划分方法的土地质量地球化学评价——以吉林省乌拉街镇为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 817-829.
[5] 严克涛, 郭清海, 刘明亮. 西藏搭格架高温热泉中砷的地球化学异常及其存在形态[J]. 吉林大学学报(地球科学版), 2019, 49(2): 548-558.
[6] 张治波, 朱志军, 王文锋, 徐颖, 李丽荣. 滇西兰坪盆地中-新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379.
[7] 吴永涛, 韩润生. 滇东北矿集区茂租铅锌矿床地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(2): 400-413.
[8] 张超, 吴新伟, 张渝金, 郭威, 权京玉. 龙江盆地中生代火山岩锆石U-Pb年代学及其对基底性质的制约[J]. 吉林大学学报(地球科学版), 2019, 49(2): 460-476.
[9] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[10] 梅西, 张训华, 刘健, 王中波, 郭兴伟, 黄湘通. 南黄海3.50 Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报(地球科学版), 2019, 49(1): 74-84.
[11] 王修齐, 滕龙, 郑红军, 方朝刚, 张训华. 下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J]. 吉林大学学报(地球科学版), 2019, 49(1): 248-260.
[12] 殷征欣, 王海峰, 韩金生, 吕修亚, 沈泽中, 陈静, 贺惠忠, 谢安远, 关瑶, 董超. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报(地球科学版), 2019, 49(1): 261-277.
[13] 吕骏超, 舒广龙, 张德宝, 赵岩, 刘桂香, 毕中伟. 内蒙古扎赉特旗神山铁铜矿床成岩成矿年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1683-1695.
[14] 杨帆, 汪岩, 那幅超, 付俊彧, 张广宇, 孙巍, 庞雪娇, 陈井胜, 刘淼, 李斌. 内蒙古白音诺尔铅锌矿床成矿时代及其地质意义——来自侵入岩地球化学及年代学的制约[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1696-1710.
[15] 史冀忠, 卢进才, 魏建设, 牛亚卓, 韩小锋, 张宇轩. 内蒙古阿拉善右旗雅干地区二叠系埋汗哈达组硅质岩成因及其沉积环境[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1711-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!