吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 400-413.doi: 10.13278/j.cnki.jjuese.20170339

• 地质与资源 • 上一篇    下一篇

滇东北矿集区茂租铅锌矿床地球化学特征

吴永涛, 韩润生   

  1. 昆明理工大学有色金属矿产地质调查中心西南地质调查所, 昆明 650093
  • 收稿日期:2018-01-05 出版日期:2019-03-26 发布日期:2019-03-28
  • 通讯作者: 韩润生(1964-),研究员,主要从事流体地球化学及隐伏矿预测方面的研究,E-mail:554670042@qq.com E-mail:554670042@qq.com
  • 作者简介:吴永涛(1989-),男,博士,主要从事矿床地球化学方面的研究,E-mail:597433860@qq.com
  • 基金资助:
    国家自然科学基金项目(U1133602,40863002,41572060);云南省矿产资源预测与评价重点工程实验室项目(2010);昆明理工大学创新团队项目(2008)

C, O, Sr Isotope and REE Geochemistry of Maozu Pb-Zn Deposit in Northeastern Yunnan Mineral Concentration Area

Wu Yongtao, Han Runsheng   

  1. Southwest Geological Survey, Geological Survey Center for Nonferrous Metals Resource, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2018-01-05 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Natural Science Foundation of China (U1133602,40863002,41572060), Project of Key Laboratory of Mineral Resources Prediction and Evalution of Yunnan Province (2010) and Project of Innovation of Kunming University of Science and Technology (2008)

摘要: 茂租铅锌矿床位于扬子地台西南缘,是滇东北矿集区内的一个大型矿床,矿体主要呈似层状产于震旦系灯影组白云岩中;矿石矿物以闪锌矿为主,次为方铅矿;脉石矿物主要为白云石、方解石和萤石。本文对该矿床中与铅锌矿密切共生的团块状白云石、方解石和萤石以及围岩灯影组白云岩的REE地球化学特征和C、O、Sr同位素进行了对比研究。结果表明:团块状白云石和方解石的稀土配分模式、C同位素和Sr同位素比值与围岩灯影组白云岩比较接近,表明形成团块状白云石和方解石的成矿流体主要来源于围岩灯影组白云岩的溶解;但这两种矿物的稀土总量∑REE高于灯影组白云岩,说明成矿流体除了主要由围岩提供REE外,还有部分其他富含REE流体的加入。萤石则具有LREE亏损和分配曲线相对平缓的稀土配分模式特征,表明萤石形成于成矿的晚阶段,有更多的外部流体的加入。团块状白云石、方解石和萤石表现出明显的Eu正异常,且团块状白云石和方解石的O同位素低于灯影组白云岩,反映了存在较高温度的流体活动,这3种脉石矿物是由高温热液流体形成的。灯影组白云岩和3种脉石矿物都具有明显的Ce负异常,说明成矿流体可能主要来源于地层循环水,继承了围岩的Ce负异常特征。方解石和萤石的Sr同位素比值高于围岩震旦系灯影组白云岩和峨眉山玄武岩,但小于基底岩石昆阳群和会理群,说明成矿流体主要由赋矿围岩等沉积地层中的循环流体与流经了基底岩石的深部流体混合形成。

关键词: 茂租铅锌矿床, C、O、Sr同位素, 成矿流体, 地球化学, 滇东北矿集区

Abstract: The Maozu Pb-Zn deposit is a large deposit located in the northeastern Yunnan metallogenic province at the southwestern margin of the Yangtze plate. The ore-bodies are stratified and hosted in dolostone of Sinian Dengying Formation. The ore minerals are primarily sphalerite and galena,and the gangue minerals are mainly dolomite,calcite and fluorite. The C, O, Sr isotopes and REE geochemistry of the massive hydrothermal dolomite, calcite, fluorite and surrounding rocks were analyzed. The results show that the chondrite-normalized curves, δ13C and 87Sr/86Sr values of the massive hydrothermal dolomite and calcite are similar to those of the Sinian dolostone, indicating that C, O and Sr were mainly derived from the dissolution of the host rock. The massive hydrothermal dolomite and calcite have higher ∑REE than those of the surrounding rocks, implying that some other fluid with much higher ∑REE joined the ore-forming fluid. Fluorite is characterized by LREE depletion, and the chondrite-normalized curve is quite consistent, indicating that fluorite was formed at a later stage with more other fluid joined. The massive hydrothermal dolomite, calcite and fluorite show that positive Eu anomalies, and the δ18O values of the massive hydrothermal dolomite and calcite are lower than those of the host rock of the Sinian dolostone, indicating that these three gangue minerals might have been formed by high temperature fluid. The Sinian dolostone and the three kinds of gangue minerals show obvious negative Ce anomalies, implying that the ore-forming fluid might mainly come from Sinian Dengying Formation,which inherited the characteristics of the surrounding Sinian rocks. The 87Sr/86Sr ratios of calcite and fluorite are higher than those of the Permian Emeishan basalt and surrounding rocks of Sinian dolostone, but lower than those of the Proterozoic basement rocks (Kunyang and Huili Group). So, it is likely that the ore-forming fluid might mainly come from the surrounding rocks of Sinian Dengying Formation and other strata, and then mixed with the fluid that derived from or flowed through the Proterozoic basement rocks.

Key words: Maozu Pb-Zn deposit, C, O and Sr isotope, ore-forming fluid, geochemistry, northeastern Yunnan metallogenic province

中图分类号: 

  • P618.4
[1] 柳贺昌,林文达.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1999:1-468. Liu Hechang,Lin Wenda.Study on the Law of Pb-Zn-Ag Ore Deposit in Northeast Yunnan,China[M].Kunming,Yunnan University Press,1999:1-468.
[2] 韩润生,胡煜昭,王学琨,等.滇东北富锗银铅锌多金属矿集区矿床模型[J].地质学报,2012,86(2):280-294. Han Runsheng,Hu Yuzhao,Wang Xuekun,et al.Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in Northeastern Yunnan,China[J].Acta Geologica Sinica,2012,86(2):280-294.
[3] 张艳,韩润生,魏平堂,等.云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J].吉林大学学报(地球科学版),2017,47(3):719-733. Zhang Yan,Han Runsheng,Wei Pingtang,et al.Fluid Inclusion Features and Physicochemical Conditions of the Kuangshanchang Pb-Zn Deposit,Huize,Yunnan Province[J]. Journal of Jilin University (Earth Science Edtion),2017,47(3):719-733.
[4] 陈启良.滇东北渔户村组富铅锌矿成矿地质特征及找矿标志[J].地质与勘探,2002,38(1):22-26. Chen Qiliang.Metallogenetic Geological Features and Ore Guides of High-Grade Pb-Zn Deposits in Yuhucun Formation,Northeast Yunnan[J].Geology Prospecting,2002,38(1):22-26.
[5] 刘文周.云南茂租铅锌矿矿床地质地球化学特征及成矿机制分析[J].成都理工大学学报(自然科学版), 2009,36(5):480-486. Liu Wenzhou.Geological and Geochemical Characteristics and Metallogenic Mechanism Analysis of the Pb-Zn Deposit in Maozu,Yunnan,China[J].Journal of Chengdu University of Technology (Science & Technology Edition),2009,36(5):480-486.
[6] 贺胜辉,荣惠锋,尚卫,等.云南茂租铅-锌矿床地质特征及成因研究[J].矿产与地质,2006,20(4/5):397-402. He Shenghui,Rong Huifeng,Shang Wei,et al.Geological Characteristics and Genesis of Maozu Lead and Zinc Deposit,Yunnan[J].Mineral Resource Geology,2006,20(4/5):397-402.
[7] 周家喜,黄智龙,高建国,等.滇东北茂租大型铅锌矿床成矿物质来源及成矿机制[J].矿物岩石, 2012,32(3):62-69. Zhou Jiaxi,Huang Zhilong,Gao Jianguo,et al.Sources of Ore-Forming Metals and Fluids and Mechanism of Mineralization,Maozu Large Carbonare-Hosted Lead-Znic Deposit,Northeast Yunnan Province[J]. Acta Mineralogica Sinica,2012,32(3):62-69.
[8] 高航校,任小华,郭健,等.茂租铅锌矿床地质-地球物理特征及矿体预测研究[J].矿产与地质,2011,25(2):152-157. Gao Hangxiao,Ren Xiaohua,Guo Jian,et al. Geological-Geophysical Characteristics and Orebody Prediction of Maozu Lead-Zinc Deposit[J].Mineral Resources and Geology,2011,25(2):152-157.
[9] 韩润生,李波,倪培,等.闪锌矿流体包裹体显微红外测温及其矿床成因意义:以云南会泽超大型富锗铅锌矿床为例[J].吉林大学学报(地球科学版),2016,46(1):91-104. Han Runsheng,Li Bo,Ni Pei,et al.Infrared Micro-Thermometry of Fluid Inclusions in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit,Yunnan Province[J].Journal of Jilin University (Earth Science Edtion),2016,46(1):91-104.
[10] 刘淑文,李荣西,刘云华,等.陕西南郑马元铅锌矿床热液白云石地球化学[J].大地构造与成矿学,2015,39(6):1083-1093. Liu Shuwen,Li Rongxi,Liu Yunhua,et al.C,O,Sr Isotope and REE Geochemistry of Hydrothermal Dolomites from Mayuan Pb-Zn Deposit,Nanzheng,Shaanxi,China[J].Geotectonica et Metallogenia,2015,39(6):1083-1093.
[11] Bau M.Rare-Earth Element Mobility During Hydrothermal and Metamorphic Fluid-Rock in Traction and the Significance of the Oxidation State of Europium[J].Chemical Geology,1991,93:219-230.
[12] Davies J F,Prevec S A,Whitehead R E,et al.Variations in REE and Sr-Isotope Chemistry of Carbonate Gangue,Castellanos Zn-Pb Deposit,Cuba[J]. Chemical Geology,1998,144(1/2):99-199.
[13] 丁振举,刘从强,姚书振,等.海底热液系统高温流体的稀土元素组成及其控制因素[J].地球科学进展,2000,15(3):307-312. Ding Zhenju,Liu Congqiang,Yao Shuzhen,et al.Rare Earth Elements Compositions of High-Temperature Hydrothermal Fluids in Sea Floor and Control Factors[J].Advance in Earth Sciences,2000,15(3):307-312.
[14] 郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001,20(1):57-70. Zheng Yongfei.TheoreticalModeling of Stable Isotope Systems and Its Applications to Geochemistry of Hydrothermal Ore Deposit[J].Mineral Deposits,2001,20(1):57-70.
[15] 黄智龙,李文博,陈进,等.云南会泽超大型铅锌矿床C、O同位素地球化学[J].大地构造与成矿学,2004,28(1):53-59. Huang Zhilong,Li Wenbo,Chen Jin,et al. Carbon and Oxygen Isotope Geochemistry of the Huize Suprerlarge Pb-Zn Ore Deposits in Yunnan Province[J].Geotectonica et Metallogenia,2004,28(1):53-59.
[16] 吴永涛,韩润生,任涛,等.滇东北矿集区茂租铅锌矿床萤石的稀土元素地球特征及其指示意义[J].中国稀土学报,2017,35(4):403-412. Wu Yongtao,Han Runsheng,Ren Tao,et al.REE Geochemistry of Fluorite from the Maozu Pb-Zn Deposit and Its Geological Implications,Northeastern Yunnan,China[J].Journal of the Chinese Society of Rare of Earths,2017,35(3):403-412.
[17] Zhou J X,Huang Z L,Yan Z F.The Origin of the Maozu Carbonate-Hosted Pb-Zn Deposit,Southwest China:Constrained by C-O-S-Pb Isotopic Compositions and Sm-Nd Isotopic Age[J].Journal of Asian Earth Sciences,2013,73:39-47.
[18] Michard A.Rare Earth Element Systematic in Hydrothermal Fluids[J].Geochim,Cosmochim,Acta,1989,53:745-750.
[19] Möller P,Morteani G,Dulski P.The Origin of the Calcites from Pb-Zn Veins in the Harz Mountains,Federal Republic of Germany[J].Chemical Geology,1984,45:91-112.
[20] Bau M,Möller P.Comparative Study of Yttrium and Rare-Earth Element Behavior in Fluorine-Rich Hydrothermal Fluid[J].Contrib Mineral Petrol,1995,119(3):213-223.
[21] 刘淑文,石顺,李荣西,等.扬子板块北缘马元铅锌矿床稀土元素地球化学研究[J].矿床地质,2013,32(5):979-988. Liu Shuwen,Shi Shun,Li Rongxi,et al.REE Geochemistry of Mayuan Pb-Zn Deposit on Northern Margin of Yangtze Plate[J].Mineral Deposits,2013,32(5):979-988.
[22] Luders V,Möller P,Dulskl P.REE Fractionation in Carbonates and Fluorite[J].Monograph Series on Mineral Deposits,1993,30(9):133-150.
[23] Sverjensky D A.Europium Redox Equilibria in Aqueous Solution[J].Earth and Planetary Science Letters,1984,67:70-78.
[24] Webb G E,Kamber B S.Rare Earth Elements in Holocene Reefal Microbialites:A New Shallow Seawater Proxy[J].Geochimica et Cosmochimica Acts,2000,64:1557-1565.
[25] 王旭,沈建伟,陈代钊,等.塔里木盆地柯坪-巴楚地区早古生代白云岩类型及微量元素地球化学特征[J].矿物学报,2011,31(2):23-32. Wang Xu,Shen Jianwei,Chen Daizhao,et al.Dolomite Types and Trace Element Geochemistry of the Early Paleozoic Strata in the Keping-Bachu Area,Tarim Basin[J].Acta Mieralogica Sinica,2011,31(2):23-32.
[26] 朱东亚,金之钧,孙冬胜,等.南方震旦系灯影组热液白云岩化及其对储层形成的影响研究:黔中隆起为例[J].地质科学,2014,49(1):161-175. Zhu Dongya,Jin Zhijun,Sun Dongsheng,et al.Hydrothermally Dolomitized Reservoir Bed in Sinian Dengying Formation,Northern China:An Example from Central Guizhou Uplift[J].Chinese Journal of Geology,2014,49(1):161-175.
[27] 韩银学,李忠,韩登林,等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,2009,25(10):2405-2416. Han Yinxue,Li Zhong,Han Denglin,et al.REE Characteristics of Matrix of Dolomites and Its Origin of Lower Ordovician in Eastern Table Area,Tarim Basin[J].Acta Petrologica Sinica,2009,25(10):2405-2416.
[28] 李文博,黄智龙,张冠.云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约[J]岩石学报,2006,22(10):2567-2580. Li Wenbo,Huang Zhilong,Zhang Guan. Sources of the Ore Metals of the Huize Ore Field in Yunnan Province:Constraints from Pb,S,C,H,O and Sr Isotope Geochemistry[J].Acta Petrologica Sinica,2009,22(10):2567-2580.
[29] 刘家军,何明勤,李志明,等.兰坪白秧坪银铜大型多金属矿集区碳氧同位素组成及其地质意义[J]矿床地质,2004,23(1):1-10. Liu Jiajun,He Mingqin,Li Zhiming,et al.Oxygen and Carbon Isotopic Geochemistry of Baiyangping Silver-Copper Polymetallic Ore Concentration Area in Lanping basin of Yunnan Province and Its Significance[J]. Mineral Deposits,2004,23(1):1-10.
[30] Land L S.The Application of Stable Isotopes to Studies of the Origin of Dolomite and to Problems of Diagenesis of Clastic Sediments[C]//Arthur M A,Anderson T F,Kaplan I R,et al.Stable Isotopes in Sedimentary Geology,SEPM Short Course 10.Tulsa:Society for Sedimentary Geology,1983:1-22.
[31] Craig H.The Measurement of Oxygen Isotopes Paleotemperature[C]//Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paletemperature.Pisa:Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare,1965:161-182.
[32] 郑荣华,高建国,念红良,等.云南茂租铅锌矿床闪锌矿Rb-Sr同位素组成与地质意义[J]矿物学报,2015,35(4):435-438. Zheng Ronghua,Gao Jianguo,Nian Hongliang,et al.Rb-Sr Isotopic Compositions of Sphalerite and Its Geological Implications for Maozu Pb-Zn Deposit,Northeast Yunnan Province,China[J].Acta Mieralogica Sinica,2015,35(4):435-438.
[1] 严克涛, 郭清海, 刘明亮. 西藏搭格架高温热泉中砷的地球化学异常及其存在形态[J]. 吉林大学学报(地球科学版), 2019, 49(2): 548-558.
[2] 张治波, 朱志军, 王文锋, 徐颖, 李丽荣. 滇西兰坪盆地中-新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379.
[3] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[4] 梅西, 张训华, 刘健, 王中波, 郭兴伟, 黄湘通. 南黄海3.50 Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报(地球科学版), 2019, 49(1): 74-84.
[5] 王修齐, 滕龙, 郑红军, 方朝刚, 张训华. 下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J]. 吉林大学学报(地球科学版), 2019, 49(1): 248-260.
[6] 殷征欣, 王海峰, 韩金生, 吕修亚, 沈泽中, 陈静, 贺惠忠, 谢安远, 关瑶, 董超. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报(地球科学版), 2019, 49(1): 261-277.
[7] 吕骏超, 舒广龙, 张德宝, 赵岩, 刘桂香, 毕中伟. 内蒙古扎赉特旗神山铁铜矿床成岩成矿年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1683-1695.
[8] 杨帆, 汪岩, 那幅超, 付俊彧, 张广宇, 孙巍, 庞雪娇, 陈井胜, 刘淼, 李斌. 内蒙古白音诺尔铅锌矿床成矿时代及其地质意义——来自侵入岩地球化学及年代学的制约[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1696-1710.
[9] 史冀忠, 卢进才, 魏建设, 牛亚卓, 韩小锋, 张宇轩. 内蒙古阿拉善右旗雅干地区二叠系埋汗哈达组硅质岩成因及其沉积环境[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1711-1724.
[10] 高福红, 何雨思, 王枫, 修铭. 黑龙江省东部早古生代晨明组物源区特征及其构造背景[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1725-1740.
[11] 尹志刚, 李海娜, 张海, 郝科, 庞学昌, 宫兆民, 李敏, 张圣听. 大兴安岭加格达奇东北部花岗岩类形成时代、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1741-1755.
[12] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[13] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[14] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[15] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!