吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1327-1337.doi: 10.13278/j.cnki.jjuese.20180120

• 地质与资源 • 上一篇    下一篇

滇东北会泽灯影组硅质岩成因及沉积环境——来自岩石学和地球化学证据

陈庆松1, 杨润柏1, 刘德民2, 陶兰初1   

  1. 1. 中国人民武装警察部队黄金第十支队, 昆明 650000;
    2. 中国地质大学(武汉)地球科学学院, 武汉 430074
  • 收稿日期:2018-05-20 发布日期:2019-10-10
  • 通讯作者: 刘德民(1975-),男,副教授,主要从事区域地质矿产调查方面的教学和科研工作,E-mail:metmo2014@163.com E-mail:metmo2014@163.com
  • 作者简介:陈庆松(1986-),男,工程师,主要从事区域地质矿产调查方面的工作,E-mail:416592802@qq.com
  • 基金资助:
    中国地质调查局项目(12120113072100)

Petrogenesis and Sedimentary Environment of Cherts of Dengying Formation in Huize County, Northeastern Yunnan: Evidence from Petrology and Geochemistry

Chen Qingsong1, Yang Runbai1, Liu Demin2, Tao Lanchu1   

  1. 1. The 10 th Gold Detachment of Chinese People's Armed Police, Kunming 650000, China;
    2. School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
  • Received:2018-05-20 Published:2019-10-10
  • Supported by:
    Supported by Project of China Geological Survey (12120113072100)

摘要: 通过1:50 000区域地质调查,发现云南省会泽县一带灯影组中普遍发育硅质岩。本文通过硅质岩岩石学特征和地球化学特征分析,重点探讨了灯影组各段硅质岩的成因机制和沉积环境。结果表明:震旦系-寒武系灯影组下段硅质岩中相对富集Al和Ti,总稀土(ΣREE)相对较高,Ce呈负异常,Eu呈正异常;中段硅质岩中相对富集Ca和Mg,总稀土较低,LREE>HREE,Ce呈负异常,Eu呈正异常;上段硅质岩总稀土较低,LREE>HREE,Ce大部分呈负异常,Eu呈正负异常。综合硅质岩岩石学、地球化学特征,并结合震旦纪区域地质构造演化,认为研究区内下段硅质岩表现为正常海水沉积、中段硅质岩表现为典型热水沉积、上段表现出正常海水沉积受热水沉积影响的特征。硅质岩形成于复杂大陆边缘的浅海陆棚环境。

关键词: 滇东北, 灯影组, 硅质岩, 地球化学, 沉积环境

Abstract: The cherts of Dengying Formation are widely distributed in Huize County in northeastern Yunnan in the 1:50 000 regional survey. This paper mainly focuses on the petrogenesis and their petrological and geochemical characteristics. The cherts in the lower segment of the Sinian-Cambrian Dengying Formation are relatively rich in Al, Ti and ΣREE, with negative Ce anomaly and positive Eu anomaly; the cherts in the middle segment are characterized by high contents of Ca and Mg, relatively low contents of ΣREE (total LREE> total HREE), with negative Ce anomaly and various Eu anomalies; the cherts in the upper segment display relatively low contents of ΣREE (total LREE> total HREE), with negative Ce anomaly and various Eu anomalies. Combined with the regional tectonic evolution in the Sinian-Cambrian region, the petrological and geochemical characteristics indicate that the lower segment chert is deposited in a normal seawater environment, the middle segment chert is a product of a hydrothermal sedimentary environment, and the upper segment chert belongs to a product of normal seawater influenced obviously by hydrothermal fluids. The Dengying Formation chert in the Huize area is formed in a shallow sea shelf environment on the edge of heterogeneous continent.

Key words: northeastern Yunnan, Dengying Formation, chart, geochemistry, sedimentary environment

中图分类号: 

  • P581
[1] 张位华,姜立君,高慧,等.贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J].矿物岩石地球化学通报,2003,22(2):174-178. Zhang Weihua,Jiang Lijun,Gao Hui, et al. Study on Sedimentary Environment and Origin of Black Siliceous Rocks of the Lower Cambrian in Giuzhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(2):174-178.
[2] 马文辛,刘树根,黄文明,等.渝东地区震旦系灯影组硅质岩结构特征与成因机理[J].地质学报,2014, 88(2):239-253. Ma Wenxin, Liu Shugen, Huang Wenming, et al. Fabric Characteristics and Formation Mechanism of Chert in Simian Dengying Formation, Eastern Chongqing[J]. Acta Geologica Sinica, 2014, 88(2):239-253.
[3] 赵长缨,段立志,马中豪.上扬子地块北缘灯影组硅质岩系地球化学特征及其成因[J].西北地质,2015, 48(2):31-42. Zhao Changying, Duan Lizhi, Ma Zhonghao. Geochemical Characteristics and Genesis of Cherts of Dengying Formation on the North Rim of Yangzi Block[J]. Northwestern Geology, 2015,48(2):31-42.
[4] Yamamoto K. Geochemical Characteristics and Deposition Environment of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52:65-108.
[5] Duhig N O. Cambrian Microbian and Silica Geltextures in Silica Iron Exhalites from the Mount Windsor Volcanic Belt Australian:Their Petrography Chemistry and Origin[J]. Economic Geology,1992, 87(3):764-768.
[6] Adachi M, Yamamoto K, Sulglsk R. Hydroth Ermal Chert and Assoclated Sillceous Rocks from the Northern Paclfic:Their Geological Significa Nce as Indication of Ocean Ridge Activity[J]. Sedimentary Geology, 1986, 47(12):125-148.
[7] Bostorm K. Genesis of Fenromanganese Deposits Diagnosticcriteria for Recent and Old Deposits[C]//Rona P A. Hydrothermal Processes at Seafloors Spreading Centers. New York:Plenum Press, 1983:473-483.
[8] 雷卞军,阙洪培,胡宁,等.鄂西古生代硅质岩的地球化学特征及沉积环境[J].沉积与特提斯地质, 2002, 22(2):70-79. Lei Bianjun, Que Hongpei, Hu Ning, et al. Geochemistry and Sedimentary Environments of Palaeozoic Siliceous Rocks in Western Hubei[J]. Sediment Geol Tethyan Geol, 2002, 22(2):70-79.
[9] Rona P A. Hydrothermal Processes at Seafloors Spreading Centers[M]. New York:Plenum Press, 1983:539-555.
[10] Marchig V. Some Geochemistry Indicators for Discrimination Between Diagenetic and Hydrothermal Metalliferous Sediments[J]. Marine Geology, 1982, 58(3):241-256.
[11] Murray R W, Jones D l, Buchholtz T B M R, et al. Interoceanic Variation in the Rare Earth, Major, and Trace Element Depositional Chemistry of Chert:Perspectives Gained form the DSDP and ODP Record[J]. Geoch Cosmoch Acta, 1992, 56:1897-1913.
[12] 周永章,涂光炽,卢焕章.粤西古水剖面震旦系顶部层状硅岩的热水成因属性:岩石学和地球化学证据[J].沉积学报,1994, 12(3):1-11. Zhou Yongzhang, Tu Guangchi, Lu Huanzhang. Hydrothermal Origin Topsimian Chert Formation at Gushui, Western Guangdong, China:Petrologic and Geochemical Evidence[J]. Acta Sediment Sinica, 1994, 12(3):1-11.
[13] Fleet A J. Hydrothermal and Hydrogeneous ferro Manganes Deposits[C]//Rona P A. Hydrot Hermal Processes at Seafloor Spreading Centers. New York:Plenum Press, 1983:537-570.
[14] Michard A. The REE Content of Some Hydrothermal Fluids[J]. Chemical Geology, 1986, 55:51-60.
[15] Henderson P. Rare Earth Element Geochemistry[J]. Elesvier Science Publishers, 1984, 8:195-211.
[16] Holser W T. Evaluation of the Application of Rare-Earth Elements to Paleoceanography[J]. Paleoceanography Palaeocli matology, 1997, 132:309-323.
[17] Shimizu H,Masuda A. Cerium in Chert as an Indication of Marine Environment of Its Formation[J]. Nature, 1977, 266:346-348.
[18] Murray R W,Buchholtz T B M R,Jones D L, et al. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale[J]. Geology, 1990, 18:268-271.
[19] Murray R W. Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Application[J]. Sedimentary Geology, 1994,90:213-232.
[20] Yu Bingsong, Dong Hailiang, Widomb E, et al. Geochemistry of Basal Cambrian Black Shales and Cherts from the Northern Tarim Basin, Northwest China:Implications for Depositional Setting and Tectonic History[J]. Journal of Asian Earth Sciences, 2009, 34:418-436.
[21] Douville E,Bienvenu P, Charlou J L, et al. Yttrium Rare Earth Elements Influids from Various Deep Sea Hydrothermal Systems[J]. Geochim Cosmochim Acta, 1999, 63:627-643.
[22] German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal Scavenging of Rare Earthelements in the Ocean[J]. Nature, 1990, 345:516-518.
[23] German C R, Hergt J, Palmer M R, et al. Geochemistry of Ahydrothermal Sediment Core from the OBS Ventfield, 21°N East Pacific Rise[J]. Chemical Geology, 1999, 155:65-75.
[24] Murray R W,Buchholtz T B M R,Gerlach D C, et al. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, Californian:Assessing REE Sources to Fine Grained Marine Seiments[J]. Geoch Cosmoch Acta, 1991, 55:1875-1895.
[1] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[2] 牛海青, 韩小锋, 肖波, 魏建设, 张慧元, 王宝文. 中口子盆地侏罗系煤系烃源岩地球化学特征及生烃潜力评价[J]. 吉林大学学报(地球科学版), 2019, 49(4): 970-981.
[3] 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014.
[4] 曾忠诚, 边小卫, 张若愚, 孔文年, 陈宁, 赵端昌, 赵江林. 西昆仑塔什库尔干下-中侏罗统龙山组沉积构造背景分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1039-1052.
[5] 于介禄, 于介江, 杨万志, 张元厚, 郭秀玮. 东天山觉罗塔格带东段早志留世中酸性侵入岩的年代学、地球化学及构造意义[J]. 吉林大学学报(地球科学版), 2019, 49(3): 690-708.
[6] 王春光, 董晓杰, 徐仲元, 任云伟, 王文龙, 陈煜嵩. 内蒙古红山子地区新太古代变质侵入岩年代学及地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(3): 709-726.
[7] 单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报(地球科学版), 2019, 49(3): 662-672.
[8] 鲁倩, 孙景贵, 安久海, 韩吉龙, 褚小磊. 吉林敦化松江河地区中生代似斑状花岗岩成因和形成环境:元素、Hf同位素和锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2019, 49(3): 673-689.
[9] 单承恒, 王政, 史长浩. 基于综合等级划分方法的土地质量地球化学评价——以吉林省乌拉街镇为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 817-829.
[10] 严克涛, 郭清海, 刘明亮. 西藏搭格架高温热泉中砷的地球化学异常及其存在形态[J]. 吉林大学学报(地球科学版), 2019, 49(2): 548-558.
[11] 张治波, 朱志军, 王文锋, 徐颖, 李丽荣. 滇西兰坪盆地中-新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379.
[12] 吴永涛, 韩润生. 滇东北矿集区茂租铅锌矿床地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(2): 400-413.
[13] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[14] 高小惠, 张训华, 蔡来星, 郭兴伟, 李文强. 南黄海盆地中部隆起CSDP-2井志留系-石炭系岩石学特征及其沉积相[J]. 吉林大学学报(地球科学版), 2019, 49(1): 53-64.
[15] 梅西, 张训华, 刘健, 王中波, 郭兴伟, 黄湘通. 南黄海3.50 Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报(地球科学版), 2019, 49(1): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!