吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 1-17.doi: 10.13278/j.cnki.jjuese.20180320

• 地质与资源 •    

北黄海东部次盆地层序地层格架中烃源岩发育特征与影响因素

刘金萍1, 王改云1, 简晓玲1, 王嘹亮1, 杜民1, 成古2   

  1. 1. 自然资源部海底矿产资源重点实验室/广州海洋地质调查局, 广州 510075;
    2. 广东省地质过程与矿产资源探查重点实验室/中山大学地球科学与工程学院, 广州 510275
  • 收稿日期:2018-12-05 发布日期:2020-02-11
  • 通讯作者: 王改云(1980-),女,高级工程师,博士,主要从事层序地层及沉积学方面的研究,E-mail:94198351@qq.com E-mail:94198351@qq.com
  • 作者简介:刘金萍(1974-),女,教授级高级工程师,博士,主要从事油气地球化学及石油地质方面的研究,E-mail:liujp980517@163.com
  • 基金资助:
    国家自然科学青年基金项目(41302100);中国地质调查局地质调查项目(DD20191009,DD20190582-2)

Development and Influencing Factors of Source Rock in Sequential Stratigraphic Framework in the Eastern Sub-Basin, North Yellow Sea

Liu Jinping1, Wang Gaiyun1, Jian Xiaoling1, Wang Liaoliang1, Du Min1, Cheng Gu2   

  1. 1. Key Laboratory of Marine Mineral Resources, Ministly of Natural Resources/Guangzhou Marine Geological Survey, Guangzhou 510075, China;
    2. Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration/School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
  • Received:2018-12-05 Published:2020-02-11
  • Supported by:
    Supported by National Natural Science Foundation of China(41302100) and Project of China Geological Survey(DD20191009,DD20190582-2)

摘要: 北黄海东部次盆地是我国海域勘探程度较低的一个盆地,钻探已发现该盆地发育中、上侏罗统巨厚暗色泥岩,但目前对该盆地烃源岩的研究尚较薄弱,精细评价该盆地的烃源岩对后续勘探部署具有重要意义。本文利用多口钻井实测数据和地震、测井资料,在层序地层学研究的基础上,应用有机地球化学和有机岩石学等方法,对中、上侏罗统不同层序和同一层序不同体系域中的烃源岩特征进行综合研究,并探讨烃源岩的分布规律及影响因素。东部次盆地烃源岩非均质性特征明显:中侏罗统J2SQ1和J2SQ2层序均以半深湖-深湖相、滨浅湖相暗色泥岩为主,烃源岩有机碳质量分数总体较高(w(TOC)>1.0%),但生烃潜力指数(w(S1+S2))和氢指数(IH)均很低,且有机质类型差,表明研究区有机质丰度高的烃源岩并非都是生烃能力高的烃源岩,整体为中等-差烃源岩。上侏罗统J3SQ1层序中的烃源岩主要为三角洲前缘和滨浅湖相泥岩,有机质丰度较低,不同体系域发育的均是中等-差烃源岩;J3SQ2层序主要为半深湖-深湖相暗色泥岩,具有厚度大、质纯和横向分布广的特点,但不同体系域中烃源岩的w(TOC)变化很大(0.5%~5.3%),其中优质烃源岩主要发育在J3SQ2层序中的高位体系域和湖侵体系域中,厚度0~104 m,而低位体系域中发育的则是中等烃源岩,该套优质烃源岩是东部次盆地内最主要的一套油源岩。研究认为,层序地层格架和沉积相控制了东部次盆地烃源岩的空间展布范围,陆源有机质的输入与湖盆原位生物生产力的匹配关系控制了烃源岩的质量,湖盆水体的含氧量与盐度在一定程度上控制了有机质的保存。综上所述,北黄海东部次盆地属于中低丰度的含油气盆地,应在优质烃源岩发育区及其邻区寻找有利勘探目标。

关键词: 层序地层, 烃源岩, 影响因素, 东部次盆地, 北黄海

Abstract: The eastern sub-basin of the North Yellow Sea is an area with low degree of exploration, in which the Middle and Upper Jurassic dark mudstone is the main source rocks. The detailed evaluation of source rocks is very important for further exploration. Based on the sequence stratigraphy, by use the methods of organic geochemistry and organic petrology, the integrated study was conducted for the geochemical characteristics of the Jurassic source rocks in different sequences and different system tracts of the same sequence, and then the distribution law and main influencing factors of source rocks were discussed. The Middle and Upper Jurassic source rocks have high heterogeneity in the eastern sub-basin. The lithology of the source rocks is mainly dark mudstones of semi-deep lacustrine, deep lacustrine, and shore-shallow lacustrine in J2SQ1 and J2SQ2. Though these source rocks have high w(TOC), low w(S1+S2) and IH,and the type of organic matter is poor, so these source rocks don't have high hydrocarbon generation potential in this basin. In general, the quality of the Middle Jurassic source rocks is medium to poor. The lithology of source rocks is mainly dark mudstones of delta front and shore-shallow lacustrine in J3SQ1. The source rocks of J3SQ1 have low w(TOC), and all of them are poor source rocks in different system tracts. The lithology of source rocks is mainly dark mudstone of semi-deep lacustrine, deep lacustrine in J3SQ2, which is characterized by large thickness, high purity, and wide horizontal distribution. The w(TOC) of source rocks ranges from 0.5% to 5.3% in various system tracts of J3SQ2. The high-quality source rocks are mainly developed in the high stand system tracts and extent system tracts, which are the most important oil source rocks in the eastern sub-basin. The studies indicate that the range of distribution is controlled by the sequential stratigraphic framework and the sedimentary facies. The quality of source rocks is controlled by the terrestrial matter input and the primary organic matter production of the lake basin. The preservation of organic matter is controlled by the oxygen content and salinity of lake water to a certain degree. In conclusion, the eastern sub-basin of the North Yellow Sea is an oil and gas bearing basin with medium-low abundance. The favorable exploration targets should be found in the high-quality hydrocarbon source rocks.

Key words: sequential stratigraphy, source rock, influencing factors, Eastern sub-basin, North Yellow Sea

中图分类号: 

  • P618.13
[1] 高志勇, 张水昌, 朱如凯, 等. 塔中地区良里塔格组海平面变化与烃源岩的非均质性[J]. 石油学报, 2007, 28(5):45-50. Gao Zhiyong, Zhang Shuichang, Zhu Rukai, et al. Sea Level Change and Heterogeneity of Source Rocks of Lianglitage Formation in the Central Tarim Area[J]. Acta Petrolei Sinica, 2007, 28(5):45-50.
[2] 赵彦德, 刘洛夫, 张枝焕, 等. 南堡凹陷古近系层序地层格架中烃源岩分布与生烃特征研究[J]. 沉积学报, 2008, 26(6):1077-1085. Zhao Yande, Liu Luofu, Zhang Zhihuan,et al. Distribution and Hydrocarbon Generation of the Eogene Source Rocks in a Sequence Stratigraphic Frame Work in the Nanpu Sag Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2008, 26(6):1077-1085.
[3] 吴海波, 李军辉. 层序地层地球化学在海拉尔盆地呼和湖凹陷烃源岩评价中的应用[J]. 地质学报, 2012, 86(4):661-670. Wu Haibo, Li Junhui. Sequence Stratigraphic Geochemistry and Its Application to the Evaluation of Source Rocks of Huhehu Sag in Hailar Basin[J]. Acta Geologica Sinica, 2012, 86(4):661-670.
[4] 姜文亚, 柳飒. 层序地层格架中优质烃源岩分布与控制因素:以歧口凹陷古近系为例[J]. 中国石油勘探, 2015, 20(2):51-58. Jiang Wenya, Liu Sa. Distribution and Controlling Factors of High-Quality Hydrocarbon Source Rocks in Sequential Stratigraphic Framework:Taking Paleogene System in Qikou Depression for Instance[J]. China Petroleum Exploration, 2015, 20(2):51-58.
[5] 吴文祥, 张海翔, 李占东, 等. 层序地层地球化学方法在烃源岩评价中的应用:以海拉尔盆地贝尔凹陷为例[J]. 石油与天然气地质, 2015, 36(4):701-710. Wu Wenxiang, Zhang Haixiang, Li Zhandong, et al. Sequence Stratigraphic Geochemistry and Its Application in Evaluation of Source Rocks:Taking Beier Sag of Hailar Basin as an Example[J]. Oil & Gas Geology, 2015, 36(4):701-710.
[6] 刘忠宝, 杜伟, 高波, 等. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版), 2018, 48(1):1-14. Liu Zhongbao, Du Wei, Gao Bo, et al. Sedimentary Model and Distribution of Organic-Rich Shale in the Sequence Stratigraphic Framework:A Case Study of Lower Cambrian in Upper Yangtze Region[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1):1-14.
[7] 李美俊, 李思田, 杨龙, 等. 层序地层地球化学及其在油气勘探中的作用[J]. 地学前缘, 2005, 12(3):219-226. Li Meijun, Li Sitian, Yang Long,et al. Sequence Stratigraphic Geochemistry and Its Application to Hydrocarbon Exploration[J]. Earth Science Frontiers, 2005, 12(3):219-226.
[8] 侯读杰, 张善文, 肖建新, 等. 济阳坳陷优质烃源岩特征与隐蔽油气藏的关系分析[J]. 地学前缘, 2008, 15(2):137-146. Hou Dujie, Zhang Shanwen, Xiao Jianxin, et al. The Excellent Source Rocks and Accumulation of Stratigraphic and Lithologic Traps in the Jiyang Depression,Bohai Bay Basin[J]. Earth Science Frontiers, 2008, 15(2):137-146.
[9] 龚丽, 朱红涛, 舒誉, 等. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式[J]. 地球科学:中国地质大学学报, 2014, 39(5):546-556. Gong Li, Zhu Hongtao, Shu Yu, et al. Distribution of Middle-Deep Lacustrine Source Rocks Within Sequence Stratigraphic Framework of Wenchang Formation in Enping Depression, the Pearl River Mouth Basin[J]. Earth Science:Journal of China University of Geoscience, 2014, 39(5):546-556.
[10] 姚永坚, 吕彩丽, 康永尚, 等. 东南亚地区烃源岩特征与主控因素[J]. 地球科学:中国地质大学学报, 2013, 38(2):368-378. Yao Yongjian, Lü Caili, Kang Yongshang, et al. Characteristics of Hydrocarbon Source Rocks and Their Main Controlling Factors in Southeast Asia[J]. Earth Science:Journal of China University of Geoscience, 2013, 38(2):368-378.
[11] 蔡来星, 卢双舫, 李昂, 等. 松辽盆地肇州区块沙河子组层序地层格架特征及其对沉积和烃源岩的控制作用[J]. 吉林大学学报(地球科学版), 2015, 45(3):724-735. Cai Laixing, Lu Shuangfang, Li Ang, et al. Sequence Stratigraphy Characteristics and Its Control Action on Sedimentary and Source Rock in Shahezi Formation of Zhaozhou Area in Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3):724-735.
[12] 李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10):1774-1786. Li Hao, Lu Jianlin, Li Ruilei, et al. Generation Paleoenviroment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression South Songliao Basin[J]. Earth Science, 2017, 42(10):1774-1786.
[13] Katz B J. Factors Controlling the Development of the Lacustrine Petroleum Source Rocks:An Update[C]//Huc A Y. Paleogeography, Paleoclimate and Source Rocks. Tulsa:The American Association of Petroleum Geologists, 1995:61-79.
[14] Carroll A R, Bohacs K M. Stratigraphic Classification of Ancient Lakes Balancing Tectonic and Climatic Controls[J]. Geology, 1999, 27(2):99-102.
[15] Carroll A R, Bohacs K M. Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins[J]. AAPG Bulletin, 2001, 85(6):1033-1053.
[16] 严德天, 王清晨, 陈代钊, 等. 扬子及周缘地区上奥陶统-下志留统烃源岩发育环境及其控制因素[J]. 地质学报, 2008, 82(3):321-327. Yan Detian, Wang Qingchen, Chen Daizhao,et al. Sedimentary Environment and Development Controls of the Hydrocarbon Sources Beds:The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area[J]. Acta Geologica Sinica, 2008, 82(3):321-327.
[17] 张林晔. 湖相烃源岩研究进展[J]. 石油实验地质, 2008, 30(6):591-595. Zhang Linye. The Progress on the Study of Lacustrine Source Rocks[J]. Petroleum Geology & Experiment, 2008, 30(6):591-595.
[18] 林俊峰, 郝芳, 胡海燕, 等. 廊固凹陷沙河街组烃源岩沉积环境与控制因素[J]. 石油学报, 2015, 36(2):163-173. Lin Junfeng, Hao Fang, Hu Haiyan,et al. Depositional Environment and Controlling Factors of Source Rock in the Shahejie Formation of Langgu Sag[J]. Acta Petrolei Sinica, 2015, 36(2):163-173.
[19] 姜雪, 邹华耀, 庄新兵, 等. 辽东湾地区烃源岩特征及其主控因素[J]. 中国石油大学学报(自然科学版), 2010, 34(2):31-37. Jiang Xue, Zou Huayao, Zhuang Xinbing,et al. Characteristics of Hydrocarbon Source Rocks in Liaodong Bay Area and Its Main Controlling Factors[J]. Journal of China University of Petroleum(Natural Science Edition), 2010, 34(2):31-37.
[20] Massoud M S, Killop S D, Scott A C, et al. Oil Source Rock Potential of the Lacustrine Jurassic Sim Uuju Formation, West Korea Bay Basin:Part Ⅰ:Oil-Source Rock Correlation and Environment of Deposition[J]. Journal Petroleum Geology, 1991, 14(4):365-385.
[21] Massoud M S, Scott A C, Killop S D, et al. Oil Source Rock Potential of the Lacustrine Jurassic Sim Uuju Formation, West Korea Bay Basin:Part Ⅱ:Nature of the Matter and Hydrocarbon-Generation History[J]. Journal Petroleum Geology, 1993, 16(3):265-283.
[22] Killops S D, Massoud M S, Scott A C. Biomarker Characterization of an Oil and Its Possible Source Rocks from Offshore Korea Bay Basin[J]. Applied Geochemistry, 1991, 6:143-157.
[23] Liu Jinping, Wang Liaoliang, Jian Xiaoling, et al. Analyzing Geochemical Characteristics and Hydrocarbon Generation History of the Middle and Upper Jurassic Source Rocks in the North Yellow Sea Basin[J]. Journal of Petroleum Science and Engineering, 2015,126:141-151.
[24] 刘金萍, 王改云, 王嘹亮, 等. 北黄海东部次盆地油气成藏主控因素[J]. 石油与天然气地质, 2015, 36(6):888-896. Liu Jinping, Wang Gaiyun, Wang Liaoliang, et al. Main Controlling, Factors of Hydrocarbon Accumulation in the Eastern Sub-Basin, North Yellow Sea[J]. Oil & Gas Geology, 2015, 36(6):888-896.
[25] 李文勇, 李东旭, 夏斌, 等. 北黄海盆地构造演化特征分析[J]. 现代地质, 2006, 20(2):268-276. Li Wenyong, Li Dongxu, Xia Bin,et al. Characteristics of Structural Evolution of the North Yellow Sea Basin[J]. Geoscience, 2006,20(2):268-276.
[26] 李文勇, 曾祥辉, 黄家坚. 北黄海中、新生代盆地:残留盆地还是叠合盆地?[J]. 地质学报, 2009, 83(9):1269-1274. Li Wenyong, Zeng Xianghui, Huang Jiajian, et al. Meso-Cenozoic North Yellow Sea:Residual Basin or Superimposed Basin?[J]. Acta Geologica Sinica, 2009, 83(9):1269-1274.
[27] 王贵文, 朱振宇, 朱广宇. 烃源岩测井识别与评价方法研究[J]. 石油勘探与开发, 2002, 29(4):50-53. Wang Guiwen, Zhu Zhenyu, Zhu Guangyu. Logging Identification and Evaluationof Cabrian-Ordovician Source Rocks in Sysneclise of Tarim Basin[J]. Petroleum Exploration and Development, 2002, 29(4):50-53.
[28] 杨少春, 王娜, 李明瑞, 等. 鄂尔多斯盆地崇信地区三叠系延长组烃源岩测井评价[J]. 天然气地球科学, 2013, 24(3):470-476. Yang Shaochun, Wang Na, Li Mingrui,et al. The Logging Evaluation of Source Rocks of Triassic Yanchang Formation in Chongxin Area Ordos Basin[J]. Natural Gas Geoscience, 2013, 24(3):470-476.
[29] 刚文哲, 林壬子. 应用地球化学[M]. 北京:石油工业出版社, 2011:181-208. Gang Wenzhe, Lin Renzi. Applied Geochemistry[M]. Beijing:Petroleum Industry Press, 2011:181-208.
[30] Peters K E, Cassa M R. Applied Sourcock Geochemistry[C]//Magoon L B, Dow W G. The Petroleum System:From Source To Trap.[S.l.]:AAPG, 1994:93-120.
[31] Dembicki H. Three Common Source Rock Evaluation Errors Made by Geologists During Prospect or Play Appraisals[J]. AAPG Bulletin, 2009, 93(16/17):341-356.
[32] 贺聪, 吉利明, 苏奥, 等. 利用预测有机碳含量探讨鄂尔多斯盆地延长组有机质丰度空间分布及控制因素[J]. 地质学报, 2017, 91(8):1836-1847. He Cong, Ji Liming, Su Ao, et al. Application of Predicted TOC to the Discussion of Spatial Distribution of Organic Matter Abundance of Yanchang Formation in Southern Ordos Basin and Its Controlling Factors[J]. Acta Geological Sinica, 2017, 91(8):1836-1847.
[33] 朱筱敏. 层序地层学[M]. 东营:石油大学出版社, 2000:108-146. Zhu Xiaomin. Sequence Stratigraphy[M]. Dongying:Petroleum University Press, 2000:108-146.
[34] Jiang Y L, Liu H, Song G Q, et al. Differential Hydrocarbon Enrichment and Its Main Controlling Factors in Depressions of the Bohai Bay Basin[J]. Acta Geological Sinica, 2017, 91(5):1855-1872.
[35] 戴鸿鸣, 王顺玉, 陈义才. 油气勘探地球化学[M]. 北京:石油工业出版社, 2011:54-82. Dai Hongming, Wang Shunyu, Chen Yicai. Oil & Gas Exploration Geochemistry[M]. Beijing:Petroleum Industry Press, 2011:54-82.
[36] Peters K E, Walters C C, Moldow A J, et al. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History[M]. Cambridge:Cambridge University Press, 2005.
[37] Zhu Y M, Weng H X, Su A G, et al. Geochemical Characteristics of Tertiary Saline Lacustrine Oils in the Western Qaidam Basin, Northwest China[J]. Applied Geochemistry, 2005, 20(10):1875-1889.
[1] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[2] 李汝斌. 吐哈盆地台南凹陷二叠系充填特征及其研究意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1518-1528.
[3] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[4] 王朝, 王冠民, 杨清宇, 胡津, 何为, 石晓明, 张婕. 吴起—志丹地区延长组下组合浊沸石的纵向分布特征与成因[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1247-1260.
[5] 牛海青, 韩小锋, 肖波, 魏建设, 张慧元, 王宝文. 中口子盆地侏罗系煤系烃源岩地球化学特征及生烃潜力评价[J]. 吉林大学学报(地球科学版), 2019, 49(4): 970-981.
[6] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[7] 蔡来星, 肖国林, 郭兴伟, 王蛟, 吴志强, 李宝刚. 由下扬子区海陆对比分析南黄海盆地下志留统烃源岩特征及其主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 39-52.
[8] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[9] 肖国林, 蔡来星, 郭兴伟, 董贺平, 庞玉茂. 北黄海盆地东部坳陷勘探突破对我国近海残留“黑色侏罗系”油气勘探的启示[J]. 吉林大学学报(地球科学版), 2019, 49(1): 115-130.
[10] 吴和源, 赵宗举, 汪建国, 王培玺, 龚发雄, 肖飞. 华北克拉通北缘寒武系层序地层划分[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1609-1624.
[11] 杨晓平, 张文龙, 汪岩, 谭红艳. 漠河盆地北部中侏罗统烃源岩有机质评价[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1635-1644.
[12] 龚跃华, 杨胜雄, 王宏斌, 梁金强, 梁劲. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1030-1042.
[13] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[14] 都鹏燕, 高岗, 魏涛, 赵乐义, 杨军, 李涛, 王建国. 雅布赖盆地萨尔台凹陷侏罗系新河组有效烃源岩研究[J]. 吉林大学学报(地球科学版), 2018, 48(1): 29-38.
[15] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!