吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (3): 721-731.doi: 10.13278/j.cnki.jjuese.20190141

• 地质与资源 • 上一篇    

鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征

王付勇, 程辉   

  1. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249
  • 收稿日期:2019-07-16 发布日期:2020-05-29
  • 作者简介:王付勇(1985-),男,副研究员,博士,主要从事油气藏动态监测、非常规油藏开发与提高采收率研究,E-mail:wangfuyong@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(51604285,51874320)

Characterization of Pore Structure and Petrophysical Properties of Tight Sandstone of Yanchang Formation, Ordos Basin

Wang Fuyong, Cheng Hui   

  1. Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China
  • Received:2019-07-16 Published:2020-05-29
  • Supported by:
    Supported by National Natural Science Foundation of China (51604285, 51874320)

摘要: 基于高压压汞和核磁共振测试方法,结合分形理论对鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性进行了表征。采用毛管束模型和润湿相模型计算了高压压汞孔喉分形维数,利用核磁共振测试T2谱分别计算了大孔、中孔、小孔以及总孔隙的分形维数;对各分形维数与油藏物性之间的关系进行了对比分析。研究表明:基于高压压汞曲线计算岩心分形维数时,相比于润湿相模型,毛管束模型计算得到的分形维数与油藏物性之间具有更好的相关性,随着分形维数增加,平均半径减小,孔喉结构非均质性增强,油藏物性变差。核磁总孔隙分形维数与油藏物性相关性较差,大孔和中孔的分形维数与油藏物性具有较好的相关性,其中随着大孔和中孔分形维数增加,岩心渗透率降低,油藏物性变差;与小孔相比,大孔和中孔的分形维数与油藏物性的相关性更强,表明致密砂岩储层物性主要受大孔和中孔控制,分形维数可以有效表征致密砂岩小孔、中孔和大孔对油藏物性的影响。

关键词: 致密砂岩, 高压压汞, 核磁共振, 分形, 油藏物性, 鄂尔多斯盆地, 延长组

Abstract: Based on fractal theory, the pore structures of tight sandstone of Yanchang Formation in Ordos basin were characterized by high pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR). The fractal dimension from mercury intrusion capillary pressure was calculated by 3D capillary tube model and wetting phase model, the fractal dimensions of macropores, mesopores, micropores and total pores from NMR T2 spectra were calculated by NMR model, and the correlations between the calculated fractal dimension and petrophysical properties were analyzed. The research results show that the fractal dimensions calculated by mercury capillary pressure and capillary tube model have a better correlation with the petrophysical properties than those by wetting phase model. With the increase of fractal dimension, the median pore radius decreases, the pore structure heterogeneity increases, and the petrophysical properties of tight sandstone become worse; the fractal dimensions of total pores are poorly correlated to tight sandstone petrophysical properties. After the pore size ranges are divided into macropores, mesopores,and micropores, the calculated fractal dimensions of macropores and mesopores are strongly correlated to tight sandstone petrophysical properties compared to micropores, and the petrophysical properties become worse with the increase of the fractal dimensions of macropores and mesopores. It shows that tight sandstone petrophysical properties are mainly dominated by macropores and mesopores, and the fractal dimension can effectively characterize the influence of micropores, mesopores, and macropores on the tight sandstone petrophysical properties.

Key words: tight sandstone, high pressure mercury intrusion, nuclear magnetic resonance, fractal, petrophysical properties, Ordos basin, Yanchang Formation

中图分类号: 

  • P618.13
[1] 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2016, 34(1):3-17. Zou Caineng, Zhu Rukai, Bai Bin, et al. Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 34(1):3-17.
[2] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3):343-350. Jia Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):343-350.
[3] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3):94-108. Feng Xiaolong, Ao Weihua, Tang Xuan.Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs:A Case Study of Chang 7 Member in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):94-108.
[4] Shi Y, Yassin M R, Dehghanpour H. A Modified Model for Spontaneous Imbibition of Wetting Phase into Fractal Porous Media[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 543:64-75.
[5] Nooruddin H A, Hossain M E, Hasan A Y, et al. Comparison of Permeability Models Using Mercury Injection Capillary Pressure Data on Carbonate Rock Samples[J]. Journal of Petroleum Science and Engineering, 2014, 121:9-22.
[6] Li Kewen. Analytical Derivation of Brooks-Corey Type Capillary Pressure Models Using Fractal Geometry and Evaluation of Rock Heterogeneity[J]. Journal of Petroleum Science and Engineering, 2010, 73(1/2):20-26.
[7] Friesen W I, Mikula R J. Fractal Dimensions of Coal Particles[J]. Journal of Colloid and Interface Science, 1987, 120(1):263-271.
[8] Zhang Baoquan, Li Shaofen. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry[J]. Industrial & Engineering Chemistry Research, 1995, 34(4):1383-1386.
[9] 贺承祖,华明琪. 储层孔隙结构的分形几何描述[J]. 石油与天然气地质, 1998, 19(1):17-25. He Chengzu, Hua Mingqi. Fractal Geometry Description of Reservoir Pore Structure[J]. Oil & Gas Geology, 1998, 19(1):17-25.
[10] 李留仁,赵艳艳,李忠兴,等. 多孔介质微观孔隙结构分形特征及分形系数的意义[J]. 石油大学学报(自然科学版), 2004, 28(3):105-107. Li Liuren, Zhao Yanyan, Li Zhongxing, et al. Fractal Characteristics of Micropore Structure of Porous Media and the Meaning of Fractal Coefficient[J]. Journal of the University of Petroleum, China, 2004, 28(3):105-107.
[11] Wang Fuyong, Yang Kun, You Jingxi, et al. Analysis of Pore Size Distribution and Fractal Dimension in Tight Sandstone with Mercury Intrusion Porosimetry[J]. Results in Physics, 2019, 13:102283.
[12] Wang Fuyong, Jiao Liang, Liu Zhichao, et al. Fractal Analysis of Pore Structures in Low Permeability Sandstones Using Mercury Intrusion Porosimetry[J]. Journal of Porous Media, 2018, 21(11):1097-1119.
[13] 赵蕾. 核磁共振在储层物性测定中的研究及应用[D]. 青岛:中国石油大学(华东), 2010. Zhao Lei. Research and Application of NMR in Measurement of Reservoir Physical[D]. Qingdao:China University of Petroleum (East China), 2010.
[14] Zhang Zeyu, Weller A. Fractal Dimension of Pore-Space Geometry of an Eocene Sandstone Formation[J]. Geophysics, 2014, 79(6):377-387.
[15] Ge Xinmin, Fan Yiren, Zhu Xuejuan, et al. Determination of Nuclear Magnetic Resonance T2 Cutoff Value Based on Multifractal Theory:An Application in Sandstone with Complex Pore Structure[J]. Geophysics, 2015, 80(1):11-21.
[16] Yao Yanbin, Liu Dameng. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals[J]. Fuel, 2012, 95(1):152-158.
[17] Shao Xinhe, Pang Xiongqi, Li Hui, et al. Fractal Analysis of Pore Network in Tight Gas Sandstones Using NMR Method:A Case Study from the Ordos Basin, China[J]. Energy & Fuels, 2017, 31(10):10358-10368.
[18] Xu Hongjun, Fan Yiren, Hu Falong, et al. Characterization of Pore Throat Size Distribution in Tight Sandstones with Nuclear Magnetic Resonance and High-Pressure Mercury Intrusion[J]. Energies, 2019, 12(8):1528.
[19] 李彤,郭和坤,李海波,等. 致密砂岩可动流体及核磁共振T2截止值的实验研究[J]. 科学技术与工程, 2013, 13(3):701-704. Li Tong, Guo Hekun, Li Haibo, et al. Experimental Research on Movable Fluid and NMR T2 Cut off in Tight Sandstone[J]. Science Technology and Engineering, 2013, 13(3):701-704.
[20] Mandelbrot B B. The Fractal Geometry of Nature[M]. New York:W.H. Freeman, 1983.
[21] Liu Hongbo, Zheng Jun, Wang Keke, et al. Comments on "Analytical Derivation of Brooks-Corey Type Capillary Pressure Models Using Fractal Geometry and Evaluation of Rock Heterogeneity"[J]. Journal of Petroleum Science and Engineering, 2013, 104:53-54.
[22] Edward W W. The Dynamics of Capillary Flow[J]. Phys rev, 1921, 17(3):273-283.
[23] Coates G R, Xiao Lizhi, Prammer M G. NMR Logging Principles and Applications[M]. Houston:Haliburton Energy Services, 2001.
[24] Wang Fuyong, Yang Kun, Cai Jianchao. Fractal Characterization of Tight Oil Reservoir Pore Structure Using Nuclear Magnetic Resonance and Mercury Intrusion Porosimetry[J]. Fractals, 2018, 26(2):1840017.
[1] 侯伟, 赵天天, 张雷, 熊先钺, 许浩, 巢海燕, 张伟, 王伟, 张慧. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608-616.
[2] 张雷, 樊洪波, 侯伟, 张伟, 郝帅, 孙晓光. 煤层气井产出剖面测试技术及应用[J]. 吉林大学学报(地球科学版), 2020, 50(2): 617-626.
[3] 李向东, 何幼斌. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 139-157.
[4] 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539.
[5] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[6] 王朝, 王冠民, 杨清宇, 胡津, 何为, 石晓明, 张婕. 吴起—志丹地区延长组下组合浊沸石的纵向分布特征与成因[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1247-1260.
[7] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[8] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[9] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[10] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[11] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[12] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[13] 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667.
[14] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[15] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!