吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 617-626.doi: 10.13278/j.cnki.jjuese.20190270

• 油气勘探开发 • 上一篇    下一篇

煤层气井产出剖面测试技术及应用

张雷, 樊洪波, 侯伟, 张伟, 郝帅, 孙晓光   

  1. 中石油煤层气有限责任公司, 北京 100028
  • 收稿日期:2019-12-11 出版日期:2020-03-26 发布日期:2020-03-31
  • 通讯作者: 樊洪波(1988-),男,工程师,主要从事煤层气气藏动态分析及采气工艺研究,E-mail:fhb_cbm@petrochina.com.cn E-mail:fhb_cbm@petrochina.com.cn
  • 作者简介:张雷(1982-),男,高级工程师,博士,主要从事煤层气资源评价、勘探开发部署及采气工艺研究,E-mail:zhanglei2010@petrochina.com.cn
  • 基金资助:
    国家科技重大专项(2016ZX05042-002);中国石油天然气股份有限公司重大科技专项(2017E-1405)

Production Profile Test Technology and Application of Coalbed Methane

Zhang Lei, Fan Hongbo, Hou Wei, Zhang Wei, Hao Shuai, Sun Xiaoguang   

  1. PetroChina Coalbed Methane Company Limited, Beijing 100028, China
  • Received:2019-12-11 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Science and Technology Major Project (2016ZX05042-002) and Major Science and Technology Projects of CNPC (2017E-1405)

摘要: 现有常规油气井产出剖面测试方法在煤层气井中适应性较差,测试范围和测量工艺等存在局限性,施工成功率低。因此,本文对煤层气井产出剖面测试技术进行了整体的系统化设计和研发。通过紧凑的结构设计、高度集成,研发了一套可同时进行温度、压力、磁性定位、热式流量、探针持气率、微波持气、涡轮流量和超声流量等多参数测量的煤层气井测井仪,并研制了一套一次下井可进行多种测试技术测量的煤层气井产出剖面测试技术。同时提高了测试仪器的精度和抗干扰能力,开发了多任务多窗口的便携地面系统操作,并研制新型偏心测试井口应用于煤层气井,实现修井作业时不间断连续测试。该技术在鄂尔多斯盆地石楼北区块3口煤层气井进行了现场试验,取得精确、连续的测试数据。测试结果显示,石楼北区块8#+9#煤层为主力产气、产水层。

关键词: 煤层气, 产出剖面测试, 测井仪, 偏心测试井口, 石楼北区块, 鄂尔多斯盆地

Abstract: At present, the existing conventional oil and gas well production profile testing methods have limitations such as testing range and measuring technology,low construction success rate,and poor adaptability in coalbed methane wells. In order to make an improvement, a systematic design and development of coal-bed gas well production profile testing technology were carried out. Through the compact structure design and high integration, a set of coalbed methane logging instrument has been developed, which can simultaneously measure the temperature, pressure, magnetic positioning, thermal flow, probe gas, microwave gas, turbine flow, ultrasonic flow,and other multiple parameters. A multi-purpose one-time testing technology for single well coal bed methane production logging profile has been developed. A multi task and multi window portable ground system operation has been developed, and a new type of eccentric testing wellhead has also been developed and applied to coalbed methane well to realize continuous testing during workover. The technology was tested in three coalbed methane wells in north Shilou block, Ordos basin, the test data obtained are accurate and continuous,and the anti-interference ability are improved. The test results show that the 8#+9# coal seam in north Shilou block is the main gas and water producing layer.

Key words: coalbed methane, output profile testing, logging tool, eccentric testing wellhead, north Shilou block, Ordos basin

中图分类号: 

  • P618.13
[1] 郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383-1397. Zheng Min, Li Jianzhong, Wu Xiaozhi, et al.Potential, Key Areas and Exploration Direction of Conventional and Unconventional Natural Gas Resources in China[J]. Natural Gas Geoscience, 2018, 29(10):1383-1397.
[2] 门相勇,韩征,宫厚健,等.新形势下中国煤层气勘探开发面临的挑战与机遇[J].天然气工业,2018,38(9):10-16. Men Xiangyong, Han Zheng, Gong Houjian, et al. Challenges and Opportunities for CBM Exploration and Development in China Under the New Situation[J]. Natural Gas Industry, 2018,38(9):10-16.
[3] 熊章凯,李瑞,王生维,等.煤层气合层排采流体产出特征及其控制因素[J].煤炭科学技术,2018,46(6):143-148. Xiong Zhangkai, Li Rui, Wang Shengwei, et al.Output Characteristics and Control Factors of Coalbed Methane Combined Layer Drainage Fluid[J]. Coal Science and Technology, 2018, 46(6):143-148.
[4] 吴艳婷. 多煤层区煤层气合层开发产能及经济性研究[D].北京:中国矿业大学(北京),2018. Wu Yanting. Research on Productivity and Economy of CBM Development in Multi-Seam Areas[D]. Beijing:China University of Mining and Technology (Beijing), 2018.
[5] 梁涛. 煤层气排采工艺及工作制度优化研究[D].北京:中国石油大学(北京),2017. Liang Tao. Study on Optimization of CBM Drainage Technology and Working System[D]. Beijing:China University of Petroleum (Beijing), 2017.
[6] 代永革. 智能分层测试技术研究与应用[D].大庆:大庆石油学院,2008. Dai Yongge. Research and Application of Intelligent Hierarchical Testing Technology[D]. Daqing:Daqing Petroleum College, 2008.
[7] 张建军,张宝辉.油井深抽过泵产液剖面测试技术[J].油气井测试,2007(1):57-59,78. Zhang Jianjun, Zhang Baohui. Oil Well Deep Pumping Fluid Production Profile Testing Technology[J]. Oil and Gas Well Testing, 2007(1):57-59,78.
[8] 柴金刚. 溢气型低产液低含水产出剖面测井技术研究[D].大庆:东北石油大学,2014. Chai Jingang. Research on Log Technology of Low-Yield Liquid and Low-Water-Cut Production Profile with Overflow Type[D]. Daqing:Northeast Petroleum University, 2014.
[9] 庞伟,邸德家,张同义,等.页岩气井产出剖面测井资料分析及应用[J].地球物理学进展,2018,33(2):700-706. Pang Wei, Di Dejia, Zhang Tongyi, et al.Analysis and Application of Log Data of Shale Gas Well Production Profile[J]. Progress in Geophysics, 2018,33(2):700-706.
[10] 邢艳娟,孙娟,郭淑梅,等.套管钻井测井解释评价技术[J].吉林大学学报(地球科学版),2006,36(增刊2):148-150. Xing Yanjuan, Sun Juan, Guo Shumei, et al. Interpretation and Evaluation Technology of Casing Well Logging[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(Sup. 2):148-150.
[11] 凌龙,任永宏,于波涛,等.分层测压取样技术在油田监测中的应用[J].油气井测试,2017,26(3):60-62. Ling Long, Ren Yonghong, Yu Botao, et al. Application of Stratified Pressure Sampling Technology in Oilfield Monitoring[J]. Oil and Gas Well Testing, 2017, 26(3):60-62.
[12] 朱洪征,郭靖,黄伟,等.低液量水平井存储式产液剖面测井技术与应用[J].钻采工艺,2018,41(6):50-52. Zhu Hongzheng, Guo Jing, Huang Wei, et al.Interpretation Results of Gas Production and Water Production in Production Profile Logging of Test Well[J]. Drilling and Production Technology, 2018, 41(6):50-52.
[13] 艾望希.伞式集流型产液剖面测试技术的应用研究[J].声学与电子工程,2002(2):40-42. Ai Wangxi. Applied Research of Umbrella Collector Profile Testing Technology[J]. Acoustics and Electronic Engineering, 2002(2):40-42.
[14] 高建申,孙建孟,姜艳娇,等.侧向测井电极系结构影响分析及阵列化测量新方法[J].吉林大学学报(地球科学版),2016,46(6):1874-1883. Gao Jianshen, Sun Jianmeng, Jiang Yanjiao, et al. Analysis of the Influence of the Structure of the Lateral Logging Electrode System and New Method of Array Measurement[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1874-1883.
[15] 贺金鑫,Jonathan Li,闫浩文.一种面向水质监测的地球空间传感器网络架构[J].吉林大学学报(地球科学版),2011,41(4):1262-1266. He Jinxin, Li Jonathan, Yan Haowen. A Geospatial Sensor Network Architecture for Water Quality Monitoring[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4):1262-1266.
[16] 李雯. 热式质量流量计的设计[D].杭州:浙江大学,2007. Li Wen. Design of Thermal Mass Flowmeter[D]. Hangzhou:Zhejiang University, 2007.
[17] 顾宇,叶寒生,冯超,等.一种恒功率热式气体流量计温度补偿实现[J].仪表技术与传感器,2015(10):38-39. Gu Yu, Ye Hansheng, Feng Chao, et al. Temperature Compensation of a Constant Power Thermal Gas Flowmeter[J]. Instrument Technology and Sensor, 2015(10):38-39.
[18] 张金红. 气液两相流流型实验研究[D].哈尔滨:哈尔滨工程大学,2005. Zhang Jinhong. Experimental Study of Gas-Liquid Two-Phase Flow Pattern[D]. Harbin:Harbin Engineering University, 2005.
[19] 殷光. 超声波流量测量技术研究[D].西安:西安石油大学,2012. Yin Guang. Research on Ultrasonic Flow Measurement Technology[D]. Xi'an:Xi'an University of Petroleum, 2012.
[20] 张永胜,刘彦军,赵伯涛.涡轮流量计变粘度流量计算与校准方法研究[J].中国测试,2019,45(9):89-93. Zhang Yongsheng, Liu Yanjun, Zhao Botao. Calculation and Calibration Method of Variable Viscosity Flow of Turbine Flowmeter[J]. China Test, 2019,45(9):89-93.
[21] 顾玲嘉,赵凯,任瑞治,等.两种被动微波遥感混合像元分解方法比较[J].吉林大学学报(地球科学版),2013,43(6):2057-2064. Gu Lingjia, Zhao Kai, Ren Ruizhi, et al. Comparison of Two Passive Microwave Remote Sensing Hybrid Pixel Decomposition Methods[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6):2057-2064.
[1] 侯伟, 赵天天, 张雷, 熊先钺, 许浩, 巢海燕, 张伟, 王伟, 张慧. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608-616.
[2] 李向东, 何幼斌. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 139-157.
[3] 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539.
[4] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[5] 王朝, 王冠民, 杨清宇, 胡津, 何为, 石晓明, 张婕. 吴起—志丹地区延长组下组合浊沸石的纵向分布特征与成因[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1247-1260.
[6] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[7] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[8] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[9] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[10] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[11] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[12] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[13] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[14] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[15] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!