吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 139-157.doi: 10.13278/j.cnki.jjuese.20180178

• 地质与资源 • 上一篇    

宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析

李向东1,2, 何幼斌2   

  1. 1. 昆明理工大学国土资源工程学院, 昆明 650093;
    2. 长江大学地球科学学院, 武汉 430100
  • 收稿日期:2018-07-04 发布日期:2020-02-11
  • 作者简介:李向东(1973-),男,副教授,主要从事沉积学及沉积地球化学方面的研究,E-mail:lixiangdong614@163.com
  • 基金资助:
    国家自然科学基金项目(41272119,41472096)

REE Geochemistry and Indicators of Sedimentary Media of Limestone at Top of Xujiajuan Formation, Xiangshan Group in Ningxia Autonomous Region, China

Li Xiangdong1,2, He Youbin2   

  1. 1. School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. School of Geoscience, Yangtze University, Wuhan 430100, China
  • Received:2018-07-04 Published:2020-02-11
  • Supported by:
    Supported by National Natural Science Foundation of China (41272119, 41472096)

摘要: 鄂尔多斯盆地西缘宁夏香山群自20世纪40年代发现以来一直存在的时代争议,已经严重地阻碍了该地区及北祁连地区早古生代大地构造、地层和古地理等研究工作,香山群徐家圈组顶部的薄层状石灰岩以其含有的古生物化石已成为解决香山群时代归属的关键地层单元。本文通过对薄层状石灰岩稀土元素及相关微量元素测试结果的分析,探讨其沉积时的海水介质条件。结果表明:依据稀土元素的分布特征,可将薄层状石灰岩分为A、B、C三组;稀土元素具有明显的Eu正异常和Ce负异常,从A组到C组Eu正异常增大,Ce负异常减小;从A组到C组,各地球化学参数呈规律性变化,(La/La*N、(Y/Y*N、(Gd/Gd*N、Y/Ho值逐渐减小,稀土总量和轻重稀土比值逐渐增加,(La/Yb)N与(La/Sm)N值由小变大再变小,(Ce/Ce*N值逐渐增大而U/Th值逐渐减小,Sr/Ba值稳定而Zr/Rb值增大。依据地球化学特征可推测沉积时从A组到C组的水介质变化为陆源物质影响增加、海水性质减弱、水深波动、海水由还原到氧化、水动力增强和盐度基本稳定。结合稀土元素Eu异常现象及相关研究成果,推测徐家圈组顶部的薄层状石灰岩沉积于氧化-还原层化海洋靠近分界线的还原带内,热液羽引发的深水水体流动(内波、内潮汐)可能控制着陆源物质的输入和水体的氧化-还原环境,在还原的总体背景上产生水动力氧化现象。

关键词: 稀土元素, 热液羽, 石灰岩, 徐家圈组, 香山群, 鄂尔多斯盆地西缘

Abstract: The thin-bedded limestone,at the top of Xujiajuan Formation of Xiangshan Group in Ningxia, the western of Ordos basin, has become the pivotal stratigraphic unit to solve the age controversy of Xiangshan Group for some critical fossils found in Xujiajuan Formation. There has been an age controversy since the 1940s when the group was discovered, which now seriously blocks the research such as Early Paleozoic tectonics, stratigraphy and paleogeography in the northern Qilian area. The authors discussed the aqueous media from which these thin-bedded limestones were deposited based on the data of rare earth elements (REEs) and other trace elements. The results show that:1) the thin-bedded limestone can be divided into three types of A, B and C according to their REEs characteristics. 2) the positive Eu anomalies and negative Ce anomalies increase and decrease from type A to type C, respectively. 3) the geochemical indices of limestone change regularly from type A to type C, including the decrease of (La/La*)N, (Y/Y*)N, (Gd/Gd*)N, and Y/Ho ratios, the increase of the concentration of total REE and the ratios of light REE to heavy REE, the first increase and then decrease of (La/Yb)N and (La/Sm)N values, the increase of (Ce/Ce*)N values relative to the decrease of U/Th ratios, and the stability of Sr/Ba ratios relative to the distinct increase of Zr/Rb ratios. These geochemical changes suggest that the water media from type A to type C during deposition were characterized by:1)the attributes of seawater was decreased while the influence of terrigenous origin increased. 2)the depositional hydrodynamic intensity increased distinctively with variation of water depth. 3)the redox condition was from reduction to oxidation, and the water salinity was stable. Based on these interpretations of sedimentary aqueous media (seawater), sedimentary environments, and the significant positive Eu anomalies, the deposition of thin-bedded limestones perhaps occurred in an anoxic zone near the boundary of redox-stratified ocean and the internal-waves and internal-tides influenced by the sea floor hydrothermal plumes, which probably controlled the input of terrigenous material and the redox conditions, causing hydrodynamic oxygenation on the anoxic background.

Key words: rare earth elements, hydrothermal plumes, limestone, Xujiajuan Formation, Xiangshan Group, western of Ordos basin

中图分类号: 

  • P512.2
[1] 边兆祥.宁夏的南山系[J].地质知识, 1954(4):23-25. Bian Zhaoxiang. Nanshan System of Ningxia[J]. Geological Knowledge, 1954(4):23-25.
[2] 霍福臣.宁夏地质概论[M].北京:科学出版社, 1989:43-68. Huo Fuchen. Introduction to Geology of Ningxia[M]. Beijing:Science Press, 1989:43-68.
[3] 张抗.香山群时代讨论[J].石油实验地质, 1993, 15(3):309-316. Zhang Kang. Discussion on the Geological Age of the Xiangshan Group in the Ordos Basin[J]. Experimental Petroleum Geology, 1993, 15(3):309-316.
[4] 王振藩, 郑昭昌.宁夏香山群的时代探讨[J].中国区域地质, 1998, 17(1):69-73. Wang Zhenfan, Zheng Zhaochang. The Age of the Xiangshan Group in Ningxia[J]. Regional Geology of China, 1998, 17(1):69-73.
[5] 周志强, 校培喜.对香山群时代的商榷[J].西北地质, 2010, 43(1):54-59. Zhou Zhiqiang, Xiao Peixi. Discussion on the Age of the Xiangshan Group[J]. Northwestern Geology, 2010, 43(1):54-59.
[6] 由伟丰, 张海清, 校培喜, 等.北祁连山-阿拉善地区寒武纪构造-岩相古地理[J].地球科学进展, 2011, 26(10):1092-1100. You Weifeng, Zhang Haiqing, Xiao Peixi, et al. Tectono-Lithofacies-Palaeogeography of the Cambrian in North Qilian Mountain-Alxa Area[J]. Advances in Earth Science, 2011, 26(10):1092-1100.
[7] 李向东, 何幼斌, 王丹, 等.宁夏香山群徐家圈组内波和内潮汐沉积[J].古地理学报, 2009, 11(5):513-523. Li Xiangdong, He Youbin, Wang Dan, et al. Internal-Wave and Internal-Tide Deposits of the Middle Ordovicaian Xiangshan Group Xujiajuan Formation, Ningxia[J]. Journal of Palaeogeography, 2009, 11(5):513-523.
[8] 李向东, 何幼斌, 张铭记, 等.宁夏中奥陶统香山群徐家圈组内波、内潮汐沉积类型[J].地球科学进展, 2011, 26(9):1006-1014. Li Xiangdong, He Youbin, Zhang Mingji, et al. Sedimentary Types of Internal Wave and Internal Tide Deposits of Middle Ordovician, Xujiajuan Formation, Xiangshan Group, Ningxia Autonomous Region, China[J]. Advances in Earth Science, 2011, 26(9):1006-1014.
[9] He Youbin, Luo Jinxiong, Li Xiangdong, et al.Evidence of Internal-Wave and Internal-Tide Deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China[J]. Geo-Marine Letters, 2011, 31(5/6):509-523.
[10] 李向东, 何幼斌, 王丹, 等.贺兰山以南中奥陶统香山群徐家圈组古水流分析[J].地质论评, 2009, 55(5):653-662. Li Xiangdong, He Youbin, Wang Dan, et al. Analysis on Palaeocurrent in the Xujiajuan Formation, Xiangshan Group, Middle Ordovicaian, in Southern Helan Mountains[J]. Geological Review, 2009, 55(5):653-662.
[11] 李向东, 何幼斌, 刘训, 等.宁夏中奥陶统香山群徐家圈组大地构造环境分析[J].中国地质, 2011, 38(2):374-383. Li Xiangdong, He Youbin, Liu Xun, et al. The Analysis for Tectonic Setting of Xujiajuan Formation, Xiangshan Group, Ningxia, China[J]. Geology in China, 2011, 38(2):374-383.
[12] 李天斌.宁夏香山群地层时代的再讨论[J].西北地质, 1997, 18(2):1-9. Li Tianbin. Re-Discussion of Stratigraphic Age of Xiangshan Group, Ningxia[J]. Northwestern Geology, 1997, 18(2):1-9.
[13] Mclennan S M. Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Propcesses[J]. Reviews in Mineralogy, 1989, 21(1):169-200.
[14] Bau M, Dulski P. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formation, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2):37-55.
[15] Lawrence M G, Greig A, Collerson K D, et al. Rare Earth Element and Yttrium Variablility in South East Queensland Waterways[J]. Aquatic Geochemistry, 2006, 12(1):39-72.
[16] Wang Q X, Lin Z J, Chen D F. Geochemical Constraints on the Origin of Doushantuo Cap Carbonates in the Yantze Gorges Area, South China[J]. Sedimentary Geology, 2014, 304:59-70.
[17] Frimmel H E. Trace Element Distribution in Neoproterozoic Carbonates as Palaeoenvironmental Indicator[J]. Chemical Geology, 2009, 258(3/4):338-353.
[18] Nothduft L D, Webb G E, Kamber B S. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia:Confirmation of a Seawater REE Proxy in Ancient Limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2):263-283.
[19] Zhao H, Jones B. Distribution and Interpretation of Rare Earth Elements and Yttrium in Cenozoic Dolostones and Limestones on Cayman Brac, British West Indies[J]. Sedimentary Geology, 2013, 284/285:26-38.
[20] Miura N, Asahara Y, Kawabe I. Rare Earth Element and Sr Isotopic Study of the Middle Permian Limestone-Dolostone Sequence in Kuzuu Area, Central Japan:Seawater Tetrad Effect and Sr Isotopic Signatures of Seamount-Type Carbonate Rocks[J]. The Journal of Earth Planetary Science of Nagoya University, 2004, 51(1):11-35.
[21] Azmy K, Brand U, Sylvester P, et al. Biogenic and Abiogenic Low-Mg Calcite (bLMC and aLMC):Evaluation of Seawater-REE Composition, Water Masses and Carbonate Diagenesis[J]. Chemical Geology, 2011, 280(1/2):180-190.
[22] Byrne R H, Sholkovitz E R. Marine Chemistry and Geochemistry of the Lanthanides[C]//Gschneidner Jr K A, Eyring L. Handbook on the Physics and Chemistry of Rare Earths. Amsterdam:Elsevier, 1991:497-593.
[23] 王中刚, 于学元, 赵振华.稀土元素地球化学[M].北京:科学出版社, 1989:247-278. Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. Rare Earth Element Geochemistry[M]. Beijing:Science Press, 1989:247-278.
[24] Bau M, Möller P, Dulski P. Yttrium and Lanthanides in Eastern Mediterranean Seawater and Their Fractionation During Redox-Cycling[J]. Marine Chemistry, 1997, 56(1/2):123-131.
[25] Morad S, Felitsyn S. Identification of Primary Ce-Anomaly Signatures in Fossil Biogenic Apatite:Implication for the Cambrian Oceanic Anoxia and Phosphogenesis[J]. Sedimentary Geology, 2001, 143(3/4):259-264.
[26] 林治家, 陈多福, 刘芊.海相沉积氧化还原环境的地球化学识别指标[J].矿物岩石地球化学通报, 2008, 27(1):72-80. Lin Zhijia, Chen Duofu, Liu Qian. Geochemical Indices for Redox Conditions of Marine Sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1):72-80.
[27] 常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评, 2009, 55(1):91-99. Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox Sensitive Trace Elements as Paleoenvironments Proxies[J]. Geological Review, 2009, 55(1):91-99.
[28] 王开怡. 以微量元素组合区分沉积环境初探[J].大地构造与成矿学, 1984, 8(3):296-304. Wang Kaiyi. A Preliminary Study of Identification Sedimentary Environments by Trace Element Association[J]. Geotectonica et Metallogenia, 1984, 8(3):296-304.
[29] 刘刚, 周东升.微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J].石油实验地质, 2007, 29(3):307-314. Liu Gang, Zhou Dongsheng. Application of Microelements Analysis in Identifying Sedimentary Environment:Taking Qianjiang Formation in the Jianghan Basin as an Example[J]. Petroleum Geology & Experimen, 2007, 29(3):307-314.
[30] 腾格尔.海相地层元素、碳氧同位素分布与沉积环境和烃源岩发育关系:以鄂尔多斯盆地为例[D].兰州:中国科学院兰州地质研究所, 2004:42-51. Tenger. The Distribution of Elements, Carbon and Oxygen Isotopes on Marine Strataand Environmental Correlation Between they and Hydroearbon Sourcerocks Formation:An Example from Ordos Basin, China[D]. Lanzhou:Lanzhou Institute of Geology, Chinese Academy of Sciences, 2004:42-51.
[31] Shields G A, Webb G E. Has the REE Composition of Seawater Changed over Geological Time[J]. Chemical Geology, 2004, 204(1/2):103-107.
[32] Bau M, Dulski P. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge:Implications for Y and REE Behaviour During Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater[J]. Chemical Geology, 1999, 155(1/2):77-90.
[33] Nozaki Y, Lerche D, Alibo D S, et al. The Estuarine Geochemistry of Rare Earth Elements and Indium in the Chao Phraya River, Thailand[J]. Geochimica et Cosmochimica Acta, 2000, 64(23):3983-3994.
[34] Nozaki Y, Zhang J, Amakaw H. The Fractionation Between Y and Ho in the Marine Environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2):329-340.
[35] Chen Xiaohong, Zhou Lian, Wei Kai, et al. The Environmental Index of the Rare Earth Elements in Conodonts:Evidence from the Ordovician Conodonts of the Huanghuachang Section,Yichang Area[J]. Chinese Science Bulletin, 2011, 57(4):349-359.
[36] Sugitani K. Geochemical Characteristics of Archean Cherts and Other Sedimentary Rocks in the Pilbara Block,Western Australia:Evidence for Archean Seawater Enriched in Hydrothermally-Derived Iron and Silica[J]. Precambrian Research, 1992, 57(1):21-47.
[37] Alibo D S, Nozaki Y. Rare Earth Elements in Seawater:Particle Association, Shale Normalization, and Ce Oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):363-372.
[38] Bolhar R, Van Kranendonk M J. A Non-Marine Depositional Setting for the Northern Fortescue Group, Pilbara Craton, Inferred from Trace Element Geochemistry of Stromatolitic Carbonates[J]. Precambrian Research, 2007, 155(3/4):229-250.
[39] Zhao Y Y, Zheng Y, Chen F. Trace Element and Strontium Isotope Constraints on Sedimentary Environment of Ediacaran Carbonates in Southern Anhui, South China[J]. Chemical Geology, 2009, 265(2):345-362.
[40] Yu W C, Algeo T J, Du Y S, et al. Genesis of Cryogenian Datangpo Manganese Deposit:Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459(1):321-337.
[41] Peter J M, Goodfellow W D. Mineralogy, Bulk and Rare Earth Element Geochemistry of Massive Sulphide-Associated Hydrothermal Sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick[J]. Canadian Journal of Earth Sciences, 1996, 33(2):252-283.
[42] Murray R B. Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications[J]. Sedimentary Geology, 1994, 90(3/4):213-232.
[43] 杨宗玉, 罗平, 刘波, 等.早寒武世早期热液沉积特征:以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例[J/OL]. 地球科学(2018-03-11)[2018-06-25].http://kns.cnki.net/kcms/detail/42.1874.P.20180620.1714.082.html.doi:10.3799/dqkx.2017.502. Yang Zongyu, Luo Ping, Liu Bo, et al. The Depositional Characteristics of Earliest Cambrian Hydrothermal Fluid:A Case Study of Siliceous Rocks from Yurtus Formation in the Aksu Area of Tarim Basin, Northwest China[J/OL].Earth Science(2018-03-11)[2018-06-25]. http://kns.cnki.net/kcms/detail/42.1874.P.20180620.1714.082.html.doi:10.3799/dqkx.2017.502.
[44] Slack J F, Grenne T, Bekker A, et al. Suboxic Deep Seawater in the Late Paleoproterozoic:Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA[J].Earth and Planetary Science Letters, 2007, 255(1/2):243-256.
[45] Garcia-Solsona E, Jeandel C, Labatut M, et al. Rare Earth Elements and Nd Isotopes Tracing Water Mass Mixing and Particle-Seawater Interactions in the SE Atlantic[J]. Geochimica et Cosmochimica Acta, 2014, 125:351-372.
[46] Ling S X, Wu X Y, Ren Y, et al. Geochemistry of Trace and Rare Earth Elements During Weathering of Black Shale Profiles in Northeast Chongqing, Southwestern China:Their Mobilization, Redistribution, and Fractionation[J]. Chemie der Erde-Geochimistry, 2015, 75(3):403-417.
[47] 宁夏回族自治区地质矿产局.宁夏回族自治区岩石地层(全国地层多重划分对比研究64)[M].武汉:中国地质大学出版社, 1996:3-46. Bureau of Geological and Mineral Resources of Ningxia Hui Autonomous Region. Stratigraphy (Lithostratic) of Ningxia Hui Autonomous Region (Mutiple Classification and Correlation of the Stratigraphy of China 64)[M]. Wuhan:China University of Geosciences Press, 1996:3-46.
[48] 赵晓辰, 刘池洋, 赵岩, 等. 河西走廊过渡带东部香山群硅质岩地球化学特征及其地质意义[J]. 高校地质学报, 2017, 23(1):83-94. Zhao Xiaochen, Liu Chiyang, Zhao Yan, et al. Geochemical Characteristics and Its Geological Implications of the Cherts in the Xiangshan Group of the Eastern Hexi Corridor Belt, NW China[J]. Geological Journal of China Universities, 2017, 23(1):83-94.
[49] 李三忠, 杨朝, 赵淑娟, 等. 全球早古生代造山带:Ⅱ:俯冲-增生型造山[J]. 吉林大学学报(地球科学版), 2016, 46(4):968-1004. Li Sanzhong, Yang Chao, Zhao Shujuan, et al. Global Early Paleozoic Orogens:Ⅱ:Subduction-Accretionary-Type Orogeny[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):968-1004.
[50] Yu Shan, Li Sanzhong, Zhao Shujuan, et al. Long History of a Grenville Orogen Relic of the North Qinling Terrane:Evolution of the Qinling Orogenic Belt from Rodinia to Gondwana[J]. Precambrian Research, 2015, 271:98-117.
[51] 李三忠, 赵淑娟, 李玺瑶, 等.东亚原特提斯洋:Ⅰ:南北边界和俯冲极性[J].岩石学报, 2016, 32(9):2609-2627. Li Sanzhong, Zhao Shujuan, Li Xiyao, et al. Proto-Tehtys Ocean in East Asia:I:Northern and Southern Border Faults and Subduction Polarity[J]. Acta Petrologica Sinica, 2016, 32(9):2609-2627.
[52] 钟大康, 姜振昌, 郭强, 等.热水沉积作用的研究历史、现状及展望[J].古地理学报, 2015, 17(3):285-296. Zhong Dakang, Jiang Zhenchang, Guo Qiang, et al. A Review About Research History, Situation and Prospects of Hydrothermal Sedimentation[J]. Journal of Palaeogeography, 2015, 17(3):285-296.
[53] 王青春, 鲍志东, 贺萍.内波沉积中指向沉积构造的形成机理[J].沉积学报, 2005, 23(2):255-259. Wang Qingchun, Bao Zhidong, He Ping. The Generational Mechanism of Orientating Sedimentary Structure by Internal-Waves[J]. Acta Sedimentologica Sinica, 2005, 23(2):255-259.
[1] 丁大林, 张训华, 于俊杰, 王修齐. 浙闽泥质区全新世物源和古气候演化研究进展[J]. 吉林大学学报(地球科学版), 2019, 49(1): 178-195.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 王运, 胡宝群, 王倩, 李佑国, 孙占学, 郭国林. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 719-735.
[4] 刘大为, 王铭晗, 刘素巧, 胡克. 辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(3): 694-705.
[5] 叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(3): 734-750.
[6] 王江波, 赖绍聪, 李卫红, 赵如意, 惠争卜. 北秦岭丹凤地区产铀花岗岩稀土元素地球化学特征[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1713-1721.
[7] 赵晓东, 胡昌松, 凌小明, 李军敏. 重庆南川-武隆铝土矿含矿岩系稀土元素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1691-1701.
[8] 李凤宪, 白新会, 万乐, 关庆彬, 李鹏川. 内蒙苏尼特右旗吉布胡楞土岩体LA-ICP-MS锆石U-Pb定年、地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 429-440.
[9] 戴朝成,郑荣才,任军平,朱如凯. 四川前陆盆地上三叠统须家河组物源区分析及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1085-1096.
[10] 孟庆涛,刘招君,胡菲,孙平昌,柳蓉,周人杰,甄甄. 桦甸盆地始新统油页岩稀土元素地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 390-399.
[11] 王登红,李超,陈郑辉,王成辉,黄凡,屈文俊. 辉钼矿在矿床学研究中的新用途(I):稀土元素示踪[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1647-1655.
[12] 乔耿彪, 杨钟堂, 李智明, 杨晓勇, 蓝翔华. 勉略地区寒武纪含碳岩系稀土元素地球化学特征及成因意义[J]. J4, 2011, 41(4): 1067-1076.
[13] 任向文, 石学法, 朱爱美, 刘季花, 方习生. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. J4, 2011, 41(3): 707-714.
[14] 雷吉江, 初凤友, 于晓果, 李小虎, 陶春辉, 杨克红. 劳盆地热液羽状流颗粒物微区特征及指示意义[J]. J4, 2011, 41(2): 432-439.
[15] 丛峰, 林仕良, 谢韬, 李再会, 邹光富, 梁婷. 滇西腾冲-梁河地区花岗岩锆石稀土元素组成和U-Pb同位素年龄[J]. J4, 2010, 40(3): 573-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!