吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1139-1150.doi: 10.13278/j.cnki.jjuese.20190146

• 地质工程与环境工程 • 上一篇    

抽出-处理技术抽出污染地下水——抽出效率及抽出终点

宫志强1,2, 田西昭2, 刘伟江1, 陈坚1, 康阳1, 杨光1, 党志文3   

  1. 1. 生态环境部环境规划院长江经济带生态环境联合研究中心, 北京 100012;
    2. 河北省地质环境监测院河北省地质资源环境监测与保护重点实验室, 石家庄 050021;
    3. 河北建筑工程学院市政与环境工程系, 河北 张家口 075000
  • 收稿日期:2109-07-23 发布日期:2020-07-29
  • 通讯作者: 陈坚(1981-),男,副研究员,博士,主要从事环境修复、治理、水污染控制化学方面的研究工作,E-mail:situchen@qq.com E-mail:situchen@qq.com
  • 作者简介:宫志强(1991-),男,硕士研究生,主要从事污染场地调查、水土污染防治规划及修复技术研究,E-mail:1206227525@qq.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项(2018ZX07109-001);全国地下水环境基础状况调查评估项目(2110302);河北省科技厅软科学研究专项(18453621)

Pumping Treatment Technology to Pump out Contaminated Groundwater: Extraction Efficiency and Extraction Endpoint

Gong Zhiqiang1,2, Tian Xizhao2, Liu Weijiang1, Chen Jian1, Kang Yang1, Yang Guang1, Dang Zhiwen3   

  1. 1. Yangtze River Economic Zone Ecological Environment Joint Research Center, Chinese Academy for Environmental Planning, Beijing 100012, China;
    2. Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environmental Monitoring Institute, Shijiazhuang 050021, China;
    3. Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, Hebei, China
  • Received:2109-07-23 Published:2020-07-29
  • Supported by:
    Supported by National Water Pollution Control and Governance Major Project (2018ZX07109-001),National Survey and Evaluation Project of Groundwater Environmental Basic Conditions (2110302) and Hebei Provincial Department of Science and Technology Soft Science Research Project (18453621)

摘要: 针对抽出-处理技术修复污染地下水过程中抽水井抽出效率随时间逐渐降低、抽出-处理技术运行终点(以下简称"抽出终点")难以确定的问题,提出通过评估抽水井抽出效率,以分段、多次优化抽水方案提高抽出效率、降低修复成本、减少修复时间为工作思路,利用层次分析法和专家打分法实现方案优化时间节点选择。以青海某铬盐厂为例,通过建立抽水方案优化时间节点评价指标体系,可定量分析方案优化时间节点,合理确定抽出终点。结果显示:第1次优化结果为抽水井抽出效率在20%~40%时应重新布设抽水方案(P3),即采用原抽水方案抽水100 d后需重新布设抽水井;第2次优化结果为抽水井抽出效率在20%~40%时应与其他修复技术联用(P7),即采用一次优化后抽水方案继续抽水300 d后需联合其他修复技术开展治理。经评估,2次优化可有效提高抽水井抽出效率,使修复时间缩短600 d,相同时间内含水层中六价铬去除率增加8.31%。

关键词: 抽出效率, 抽出终点, 评价指标体系, 层次分析法, 优化

Abstract: In the process of recovery of polluted groundwater by pumping treatment technology,the extraction efficiency of pump decreases gradually over time,and it is difficult to determine the end point of pumping treatment. In order to improve the efficiency of extraction, reduce repair costs, repair time of the treatment, multiple optimization of pumping scheme is proposed. By using the analytic hierarchy process and expert scoring method, the index weight, quantitative characterization of the optimal time node, and the extraction endpoint are realized. Taking a chromium salt plant in Hebei as an example, the above method was applied to optimize the pumping scheme. The results showed that when the pumping efficiency was 20%-40%, the proportion of the pumping scheme (P3) was the largest. In the first time optimization, P3 should be re-arranged after 100 d pumping. The second optimization plan is to combine with other rehabilitation technologies after the first optimization, that is to continue pumping for 300 d after the first optimized pumping scheme was used; and then, to treat the remaining contaminated groundwater of the site with other rehabilitation technologies. After evaluation, the second optimization can effectively improve the pumping efficiency of the pumping well, shorten the repair time by 600 d, and increase the removal rate of hexavalent chromium in the aquifer by 8.31% in the same time.

Key words: extraction efficiency, extraction endpoint, evaluation index system, analytic hierarchy process, optimization

中图分类号: 

  • X703
[1] 王燕.硝酸盐地下水污染数值模拟与抽出-处理技术抽水井优化研究[D]. 保定:河北农业大学, 2014:10-12. Wang Yan. Numerical Simulation of Nitrate Groundwater Pollution and Optimization of Pumping Well with Extraction and Treatment Technology[D]. Baoding:Agricultural University of Hebei, 2014:10-12.
[2] 姜烈, 何江涛, 姜永海, 等. 地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学, 2014(7):2572-2578. Jiang Lie, He Jiangtao, Jiang Yonghai,et al. Simulation Study on Optimal Extraction and Treatment Method of Groundwater Nitrate Pollution[J]. Environmental Science, 2014(7):2572-2578.
[3] 郑春苗.地下水污染物迁移模拟[M]. 北京:高等教育出版社, 2009. Zheng Chunmiao. Ground Water Pollutant Migration Simulation[M]. Beijing:Higher Education Press, 2009.
[4] Kazemzadeh-Parsi M J, Daneshmand F, Ahmadfard M A, et al. Optimal Groundwater Remediation Design of Pump and Treat Systems via a Simulation-Optimization Approach and Firefly Algorithm[J]. Engineering Optimization, 2015(1):1-17.
[5] Park Y C, Cost-Effective Optimal Design of a Pump-and-Treat System for Remediating Groundwater Contaminant at an Industrial Complex[J]. Geosciences Journal, 2016(6):891-901.
[6] 宫志强,刘明柱,刘伟江,等.单井捕获地下水污染羽的优化方法[J].环境工程学报,2019,13(10):2468-2474. Gong Zhiqiang, Liu Mingzhu, Liu Weijiang, et al. Optimization Method for Single Well Capture of Groundwater Pollution Plume[J]. Journal of Environmental Engineering, 202,13(10):2468-2474.
[7] 宫志强,陈坚,杨鑫鑫,等.某铬污染场地地下水抽水方案优化[J].环境工程,2019,37(5):1-3,75. Gong Zhiqiang, Chen Jian, Yang Xinxin, et al. Optimization of Groundwater Pumping Scheme for a Chrome-Polluted Site[J]. Environmental Engineering, 204,37(5):1-3,75.
[8] 刘苑. 地下水污染区抽水井优化研究[D]. 北京:清华大学, 2008. Liu Yuan. Optimization of Pumping Wells in Groundwater Pollution Areas[D]. Beijing:Tsinghua University, 2008.
[9] 赵勇胜.地下水污染场地风险管理与修复技术筛选[J].吉林大学学报(地球科学版),2012,42(5):1426-1433. Zhao Yongsheng. Selection of Risk Management and Remediation Techniques for Groundwater Contaminated Sites[J]. Journal of Lilin University (Earth Science Edition), 2012,42(5):1426-1433.
[10] 万鹏,张旭,李广贺,等.基于模拟-优化模型的某场地污染地下水抽水方案设计[J].环境科学研究,2016,29(11):1608-1616. Wan Peng, Zhang Xu, Li Guanghe, et al. Design of Groundwater Pumping Scheme for Contaminated Ground Based on Simulation-Optimization Model[J]. Environmental Science Research, 2016,29(11):1608-1616.
[11] 蒲敏. 污染场地地下水抽出处理技术研究[J]. 环境工程, 2017(4):12-14. Pu Min. Study on Groundwater Extraction and Treatment Technology for Contaminated Sites[J]. Environmental Engineering, 2017(4):12-14.
[12] Satkin R L, Bedient P B. Effectiveness of Various Aquifer Restoration Schemes Under Variable Hydrogeologic Conditions[J]. Groundwater, 2010, 26(4):488-498.
[13] 刘姝媛, 王红旗. 地下水污染修复技术研究进展[J]. 科学, 2014, 66(4):38-40. Liu Shuyuan, Wang Hongqi. Research Progress of Groundwater Pollution Remediation Technology[J]. Science, 2014, 66(4):38-40.
[14] 潘静静, 杨月锋, 刘家财. 基于层次分析法的教学方法评价:以《现代仓储管理》课程为例[J]. 高教论坛, 2015(6):87-89. Pan Jingjing, Yang Yuefeng, Liu Jiacai. Teaching Method Evaluation Based on Analytic Hierarchy Process:A Case Study of Modern Warehouse Management[J]. Higher Education Forum, 2015(6):87-89.
[15] 张耀辉, 郭瑞, 胡蕊,等. 基于层次分析法的地下水水质综合评价[J]. 兰州交通大学学报, 2015, 34(6):17-22. Zhang Yaohui, Guo Rui, Hu Rui, et al. Comprehensive Evaluation of Groundwater Quality Based on Analytic Hierarchy Process[J]. Journal of Lanzhou Jiaotong University, 2015, 34(6):17-22.
[16] 李霄, 王长琪, 崔健. 基于层次分析法提出的辽西地下水污染防治区划[J]. 地质论评, 2017(4):351-352. Li Xiao, Wang Changqi, Cui Jian. Groundwater Pollution Prevention Regionalization in Western Liaoning Province Based on Analytic Hierarchy Process[J]. Geological Review, 2017(4):351-352.
[17] 吕敦玉, 余楚, 周爱国,等. 某油田区地下水综合防污性能评价[J]. 水文地质工程地质, 2012, 39(3):81-85. Lü Dunyu, Yu Chu, Zhou Aiguo, et al. Evaluation of Comprehensive Anti-Pollution Performance of Groundwater in an Oil Field[J]. Hydrogeology Engineering Geology, 2012, 39(3):81-85.
[18] 葛世伦. 用1-9标度法确定功能评价系数[J]. 价值工程, 1989(1):33-34. Ge Shilun. Determination of Functional Evaluation Coefficient by 1-9 Scale Method[J]. Value Engineering, 1989(1):33-34.
[19] 张凤然,马全铭.层次分析法与模糊综合评判法在评价教师课堂教学质量中的应用[J].高师理科学刊,2013,33(6):18-20. Zhang Fengran, Ma Quanming. Application of Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation Method in Evaluating Teachers' Classroom Teaching Quality[J]. Journal of Science of Normal University, 2013,33(6):18-20.
[20] 肖云云,欧阳金琼.塔里木河流域农业气候资源综合评价与区域比较:基于模糊层次分析法[J].塔里木大学学报, 2018, 30(3):87-94. Xiao Yunyun, Ouyang Jinqiong. Comprehensive Evaluation and Regional Comparison of Agricultural Climate Resources in Tarim River Basin:Based on Fuzzy Analytic Hierarchy Process[J]. Journal of Tarim University, 2018, 30(3):87-94.
[21] 虞未江,贾超,狄胜同,等.基于综合权重和改进物元可拓评价模型的地下水水质评价[J].吉林大学学报(地球科学版),2019,49(2):539-547. Yu Weijiang, Jia Chao, Di Shengtong,et al. Evaluation of Groundwater Quality Based on Comprehensive Weight and Improved Matter-Element Extension Evaluation Model[J]. Journal of Jilin University (Earth Sciences Edition), 209,49(2):539-547.
[22] 王亚维,王中美,王益伟,等.基于GRA-AHP模型的岩溶地下水水质评价[J].水力发电,2019,45(8):1-3,62. Wang Yawei, Wang Zhongmei, Wang Yiwei,et al. Evaluation of Karst Groundwater Quality Based on GRA-AHP Model[J]. Hydropower, 2019,45(8):1-3,62.
[23] 江思义,王启耀,李春玲,等.基于专家-层次分析法的地下空间适宜性评价[J].地下空间与工程学报, 2019, 15(5):1290-1299. Jiang Siyi, Wang Qiyao, Li Chunling, et al. Suitability Evaluation of Underground Space Based on Expert-Analytic Hierarchy Process[J]. Journal of Underground Space and Engineering, 2019, 15(5):1290-1299.
[24] 建设用地土壤污染风险管控和修复监测技术导则:HJ 25.2-2019[S].北京:中国环境出版社,2019. Technical Guidelines for Soil Pollution Risk Control and Remediation Monitoring of Construction Land:HJ 25.2-2019[S]. Beijing:China Environmental Press, 2019.
[25] 污染地块地下水修复和风险管控技术导则:HJ 25.6-2019[S].北京:中国环境出版社,2019. Technical Guidelines for Groundwater Remediation and Risk Control in Contaminated Land Plots:HJ 25.6-2019[S]. Beijing:China Environmental Press, 2019.
[1] 王常明, 鲁鋆, 马栋和. 土石围堰中混凝土防渗墙设计方案的数值优化[J]. 吉林大学学报(地球科学版), 2020, 50(3): 857-865.
[2] 谢春来, 王照阳, 仇越, 勾广洲, 高军飞, 尹光, 吴勇. 伊拉克哈法亚油田高压盐膏层安全钻井技术[J]. 吉林大学学报(地球科学版), 2020, 50(2): 589-597.
[3] 陈绪钰, 王东辉, 倪化勇, 李明辉, 田凯. 长江经济带上游地区丘陵城市工程建设适宜性评价——以泸州市规划中心城区为例[J]. 吉林大学学报(地球科学版), 2020, 50(1): 194-207.
[4] 郑天成, 侯卫生, 何思彤. 基于二维地质剖面的三维地质结构多点统计学模拟方法[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1496-1506.
[5] 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796.
[6] 虞未江, 贾超, 狄胜同, 李康, 袁涵. 基于综合权重和改进物元可拓评价模型的地下水水质评价[J]. 吉林大学学报(地球科学版), 2019, 49(2): 539-547.
[7] 田敏, 董春梅, 林承焰, 柴小颖, 王丽娟. 柴达木盆地涩北二号生物气田砂体产能分类评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1060-1069.
[8] 张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 580-588.
[9] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[10] 卢文喜, 郭家园, 董海彪, 张宇, 林琳. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1511-1519.
[11] 余楚, 张翼龙, 孟瑞芳, 曹文庚. 河套平原浅层地下水动态监测网优化设计[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1173-1179.
[12] 杜润林, 刘展. 基于粒子群优化的细胞神经网络油气重力异常信息提取[J]. 吉林大学学报(地球科学版), 2015, 45(3): 926-933.
[13] 刘贺,张弘强,刘斌. 基于粒子群优化神经网络算法的深基坑变形预测方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1609-1614.
[14] 高平,张延军,方静涛,张庆,李宏伟. 浅层岩土室内、外热物性测试的相关性[J]. 吉林大学学报(地球科学版), 2014, 44(1): 259-267.
[15] 于磊,邱殿明,刘莉,凌峰,李巍,胡广鑫,刘国才. 基于SPCA和AHP联合方法的滦河流域生态环境脆弱性变化规律分析[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1588-1594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!