吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1387-1403.doi: 10.13278/j.cnki.jjuese.20190301

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

甘肃北山老金厂金矿床载金矿物特征、原位硫同位素组成及其对成矿的指示意义

黄式庭1,2,3, 于晓飞1, 吕志成1, 刘家军2, 李永胜1, 杜泽忠1, 吕鑫1, 孙海瑞1, 杜轶伦1   

  1. 1. 中国地质调查局发展研究中心/自然资源部矿产勘查技术指导中心, 北京 100037;
    2. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
    3. 江西铜业技术研究院有限公司, 南昌 330096
  • 收稿日期:2019-12-23 出版日期:2020-09-26 发布日期:2020-09-29
  • 通讯作者: 于晓飞(1970-),男,教授级高级工程师,博士,主要从事成矿规律与找矿预测方面的研究,E-mail:2358457281@qq.com E-mail:2358457281@qq.com
  • 作者简介:黄式庭(1991-),男,硕士研究生,主要从事矿物学、岩石学、矿床学研究,E-mail:hstcugb1018@sina.com
  • 基金资助:
    中国地质调查局项目(DD20160050,DD20190159)

Characteristics of Gold-Bearing Minerals and Compositions of In-Situ Sulfur of Laojinchang Gold Deposit in Beishan, Gansu Province and Its Ore-Forming Implications

Huang Shiting1,2,3, Yu Xiaofei1, Lü Zhicheng1, Liu Jiajun2, Li Yongsheng1, Du Zezhong1, Lü Xin1, Sun Hairui1, Du Yilun1   

  1. 1. Development and Research Center, China Geological Survey/Mineral Exploration Technical Guidance Center, Ministry of Natural Resources, Beijing 100037, China;
    2. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China;
    3. Jiangxi Copper Technology Research Institute Co., Ltd, Nanchang 330096, China
  • Received:2019-12-23 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by Project of China Geological Survey (DD20160050, DD20190159)

摘要: 老金厂金矿床是北山成矿南带最具代表性的中低温岩浆热液型金矿床之一,其规模为中型。依据脉体穿插、矿物共生组合和矿石结构构造等特征,将矿床矿化作用过程划分为石英-黄铁矿阶段(Ⅰ)、石英-含砷黄铁矿-毒砂阶段(Ⅱ)、石英-黄铁矿-多金属硫化物阶段(Ⅲ)和石英-方解石阶段(Ⅳ)。利用电子探针研究了不同成矿阶段载金矿物的元素组成及其分布规律。Ⅰ阶段:黄铁矿以粗粒自形立方体为主,粒度为0.50~1.50 mm,贫As、Au;毒砂含量极少,呈细粒他形。Ⅱ阶段:含砷黄铁矿周围常有大量毒砂产出,含砷黄铁矿多为立方体、五角十二面体,粒度为0.30~1.00 mm,富As、Au;该阶段矿化最为强烈,毒砂主要形成于此时期,多呈棱柱状、柱状、放射状集合体,显示富S亏As特征。Ⅲ阶段:多以黄铁矿-黄铜矿-闪锌矿共生组合脉的形式产出,黄铁矿多呈长条状,以富S、Cu、Zn、Au和贫Fe、As为特征。Ⅳ阶段:矿化作用极弱,毒砂、黄铁矿含量极少,为细粒他形。原位硫同位素组成显示:Ⅰ阶段黄铁矿δ34SV-CDT值为-3.8‰~-2.9‰,均值为-3.3‰;Ⅱ阶段黄铁矿和毒砂δ34SV-CDT值为-4.7‰~2.6‰,均值为-3.3‰;Ⅲ阶段黄铁矿和闪锌矿δ34SV-CDT值主要分布于-1.9‰~1.0‰之间,均值为0.1‰。此3个阶段硫同位素组成反映了成矿期硫主要来源于幔源岩浆,混入了部分地层硫。综合前人研究成果,认为成矿早期至晚期,成矿流体总体上由富S贫As向富As贫S演化。Ⅰ阶段体系处于中性稳定的环境,硫源充足;Ⅱ阶段为贫S富As的高氧逸度环境,由于大气降水对地层的淋滤渗透,混入富As流体,Au可能与As结合形成Au-As络合物,在成矿有利部位富集沉淀;Ⅲ阶段成矿元素种类丰富,体系为富S贫As的弱还原环境,Au很可能与HS-、S-形成络合物进入黄铁矿晶格。

关键词: 成矿阶段, 载金矿物, 电子探针, 硫同位素, 老金厂金矿床, 北山造山带

Abstract: Laojinchang gold deposit is one of the most representative medium-sized magmatic hydrothermal gold deposits formed at medium-low temperature in the southern Beishan metallogenic belt. Based on the cross cutting relationships of the different auriferous veins, mineral paragenesis, ore texture and structure, its mineralization stages can be divided into quartz-pyrite stage(Ⅰ), quartz-arsenian pyrite-arsenopyrite stage(Ⅱ), quartz-pyrite-polysulfide stage(Ⅲ), and quartz-calcite stage(Ⅳ). In this paper, the element concentration and composition in the gold-bearing minerals of different ore-forming stages were analyzed by using the electron microprobe analyzer (EMPA). The pyrite of stage I is primarily coarse-grained (0.50-1.50 mm) euhedral cube, with low content of As, Au, and a small amount of fine-grained anhedral asenopyrite. The arsenian pyrites of stage II are surrounded by a large number of arsenopyrites, and the arsenian pyrites are dominantly cubic and pentagonal dodecahedron, rich in As and Au with particle size of 0.30-1.00 mm. Stage II is the most intensive period of mineralization, and the main formation period of arsenopyrites. The arsenopyrites in this stage are primarily appeared as rhombic-columnar, columnar, and radiate-columnar aggregates, rich in S but depleted of As. The pyrites in stage Ⅲ commonly occur as veins of pyrite-chalcopyrite-sphalerite mineral paragenesis, appeared as long strip, with high content of S, Cu, Zn, Au but low content of Fe and As. The mineralization in stage Ⅳ is relatively weak with a small amount of fine-grained anhedral pyrites and asenopyrites. The δ34SV-CDT values of pyrite or and asenopyrite range from -3.8‰ to -2.9‰ (average -3.3‰) in stage Ⅰ, the δ34SV-CDT values of pyrite and asenopyrite range from -4.7‰ to 2.6‰ (average -3.3‰) in stage Ⅱ, and the δ34SV-CDT values of pyrite and sphalerite range from -1.9‰ to 1.0‰ (average 0.1‰) in stage Ⅲ; which suggests a mantle-derived magmatic sulfur provenance, and contaminated by sedimentary sulfur at the late stage, as indicated by in-situ sulfur isotope compositions. Based on the previous study, it is proposed that the ore-forming fluid was evolved from S-rich and As-poor fluids to As-rich and S-poor fluids during the mineralization. In stage Ⅰ, the ore-forming system was in neutral and stable environment with abundant sulfur. In the main stage(II), the ore forming fluid was rich in As, poor in S,and high in oxygen fugacity, and the As-rich fluids was injected into hydrothermal system due to the leaching-infiltration of meteoric water, which led to the formation of the Au-As complexes, and the possible precipitation and accumulation in appropriate place. The ore forming system was characterized by variety of metallogenic elements, rich in S, poor in As, and weak reduction in stage Ⅲ, and Au might enter the pyrite lattice in the form of [Au(HS)2]- or [AuS]- complexes.

Key words: ore-forming stage, gold-bearing mineral, EPMA, sulfur isotope, Laojinchang gold deposit, Beishan orogenic belt

中图分类号: 

  • P618.51
[1] 张洲远. 甘肃北山花牛山金矿地质特征和成矿类型研究[D]. 西安:长安大学, 2016. Zhang Zhouyuan. Geological Characteristics and Metallogenic Type Research of Huaniushan Gold Deposit in Beishan Area Gansu province[D]. Xi'an:Chang'an University, 2016.
[2] 崔惠文, 陈祖伊. 甘肃北山地区金矿地质[M]. 北京:地质出版社, 1996. Cui Huiwen, Chen Zuyi.Geology of Gold Deposit in Beishan Area, Gansu[M]. Beijing:Geological Publishing House, 1996.
[3] 司雪峰, 张华, 张树宏. 甘肃新老金厂金矿床地质特征[J]. 桂林理工大学学报, 2000, 20(3):238-242. Si Xuefeng, Zhang Hua, Zhang Shuhong. The Geological Characters of Xinjinchang and Laojinchang Gold Deposits[J]. Journal of Guilin Institute of Technology, 2000, 20(3):238-242.
[4] 刘伟, 潘小菲. 新疆-甘肃北山金矿南带的成矿流体演化和成矿机制[J]. 岩石学报, 2006, 22(1):171-188. Liu Wei, Pan Xiaofei. Evolution of Ore-Forming Fluids and Formational Mechanism for Gold Deposits in the Southern Beishan,Xinjiang-Gansu Border Area of China[J]. Acta Petrologica Sinica, 2006, 22(1):171-188.
[5] 胡朋. 北山南带构造岩浆演化与金的成矿作用[D]. 北京:中国地质科学院, 2007. Hu Peng. Tectono-Magmatic Evolution and Gold Metallogenesis of the South Beishan Mountain Area[D]. Beijing:Chinese Academy of Geologecal Sciences, 2007.
[6] 朱江. 北山造山带南带构造-岩浆建造与金多金属成矿[D]. 武汉:中国地质大学(武汉), 2013. Zhu Jiang.Tectono-Magmatic Formation and Gold-Polymetallic Mineralization in South Beishan Area, NW China[D]. Wuhan:China University of Geosciences (Wuhan), 2013.
[7] 苗来成, 朱明帅, 张福勤. 北山地区中生代岩浆活动与成矿构造背景分析[J]. 中国地质, 2014, 41(4):1190-1204. Miao Laicheng, Zhu Mingshuai, Zhang Fuqin. Tectonic Setting of Mesozoic Magmatism and Associated Metallogenesis in Beishan Area[J]. Chinese Geology, 2014, 41(4):1190-1204.
[8] 左国朝, 何国琦. 北山板块构造及成矿规律[M]. 北京:北京大学出版社, 1990. Zuo Guochao, He Guoqi. Plate Tectonics and Metallogenic Regularities in Beishan Region[M]. Beijing:Peking University Publishing House, 1990.
[9] 刘雪亚, 王荃. 中国西部北山造山带的大地构造及其演化[J]. 地学研究, 1995, 28:37-48. Liu Xueya, Wang Quan. Geotectonics and Its Evolution of the Beishan Orogenic Belt in the Northwestern China[J]. Geoscience Research, 1995, 28:37-48.
[10] 龚全胜, 刘明强, 梁明宏, 等. 北山造山带大地构造相及构造演化[J]. 西北地质, 2003, 36(1):11-17. Gong Quansheng, Liu Mingqiang, Liang Minghong, et al. The Tectonic Facies and Tectonic Evolution of Beishan Orogenic Belt, Gansu[J]. Northwestern Geology, 2003, 36(1):11-17.
[11] Sengör A M C, Natal'In B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364:299-307.
[12] Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2000, 91(1):181-193.
[13] 龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质, 2002, 35(3):28-34. Gong Quansheng, Liu Mingqiang, Li Hailin, et al. The Type and Basic Characteristics of Beishan Orogenic Belt, Gansu[J]. Northwestern Geology, 2002, 35(3):28-34.
[14] 何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 35(4):30-40. He Shiping, Ren Bingchen, Yao Wenguang, et al. The Division of Tectonic Units of Beishan Area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 35(4):30-40.
[15] Cleven N, Lin S, Guilmette C, et al. Petrogenesis and Implications for Tectonic Setting of Cambrian Suprasubduction-Zone Ophiolitic Rocks in the Central Beishan Orogenic Collage, Northwest China[J]. Journal of Asian Earth Sciences, 2015, 113(1):369-390.
[16] Chen S, Guo Z, Qi J, et al. Early Permian Volcano-Sedimentary Successions, Beishan, NW China:Peperites Demonstrate an Evolving Rift Basin[J]. Journal of Volcanology and Geothermal Research, 2016, 309:31-44.
[17] Guo Q Q, Chung S L, Xiao W J, et al. Petrogenesis and Tectonic Implications of Late Devonian Arc Volcanic Rocks in Southern Beishan Orogen, NW China:Geochemical and Nd-Sr-Hf Isotopic Constraints[J]. Lithos, 2017, 278/279/280/281:84-96.
[18] 李增达. 甘肃花牛山铅锌银多金属矿田岩浆成矿作用与找矿[D]. 北京:中国地质大学(北京), 2018. Li Zengda. Magmatic Mineralization and Prospecting of the Huaniushan Lead-Zinc-Silver Polymetallic Ore Field in Gansu Province, China[D]. China University of Geosciences (Beijing), 2018.
[19] 江永宏, 李胜荣. 湘黔地区下寒武统黑色岩系中镍-钼矿床黄铁矿的成因[J]. 地质通报, 2010, 29(2/3):427-435. Jiang Yonghong, Li Shengrong. The Genesis of Pyrite from Ni-Mo Deposit in the Lower Cambrian Black Rock Series of Hunan and Guizhou Provinces, China[J]. Geological Bulletin of China, 2010, 29(2/3):427-435.
[20] 代军治, 高菊生, 钱壮志, 等. 小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素组成及成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(6):1669-1682. Dai Junzhi, Gao Jusheng, Qian Zhuangzhi, et al. Geological Characteristics and S Isotopic Compositions of Pyrite from Lianzigou Gold Deposit in Xiaoqinling Area, and It's Genetic Significance[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6):1669-1682.
[21] 陈光远, 孙岱生, 张立, 等. 黄铁矿成因形态学[J]. 现代地质, 1987, 1(1):60-74. Chen Guangyuan, Sun Daisheng, Zhang Li, et al. Morphogenesis of Pyrite[J]. Geoscience, 1987, 1(1):60-74.
[22] 赵凯, 杨立强, 李坡, 等. 滇西老王寨金矿床黄铁矿形貌特征与化学组成[J]. 岩石学报, 2013, 29(11):3937-3948. Zhao Kai, Yang Liqiang, Li Po, et al.Morphology and Chemistry Composition of Pyrite in the Laowangzhai Gold Deposit, Ailaoshan Orogenic Belt, SW China[J]. Acta Petrologica Sinica, 2013, 29(11):3937-3948.
[23] Eckert T, Barnes A, Dhawan V, et al. A Revaluation of the Co/Ni Ratio in Pyrite as Geochemical Tool in Ore Genesis Problems[J]. Mineralium Deposita, 1979, 14(3):353-374.
[24] Fleischer M. Minor Elements in Some Sulfide Minerals[J]. Economic Geology, 1955, 50:970-1024.
[25] Wen B J, Fan H R, Hu F F, et al. Fluid Evolution and Ore Genesis of the Giant Sanshandao Gold Deposit, Jiaodong Gold Province, China:Constrains from Geology, Fluid Inclusions and H-O-S-He-Ar Isotopic Compositions[J]. Journal of Geochemical Exploration, 2016, 171:96-112.
[26] Sibson R H, Robert F, Poulsen K H. High-Angle Reverse Faults, Fluid-Pressure Cycling, and Mesothermal Gold-Quartz Deposits[J]. Geology, 1988, 16(6):551-555.
[27] Wilkinson J J, Johnston J D. Pressure Fluctuations, Phase Separation, and Gold Precipitation During Seismic Fracture Propagation[J]. Geology, 1996, 24:395-398.
[28] Peterson E C, Mavrogenes J A. Linking High-Grade Gold Mineralization to Earthquake-Induced Fault-Valve Processes in the Porgera Gold Deposit, Papua New Guinea[J]. Geology, 2014, 42(5):383-386.
[29] Taylor H P. The Oxygen Isotope Geochemistry of Igneous Rocks[J]. Contributions to Mineralogy and Petrology, 1968, 19(1):1-71.
[30] Barnett D E, Chamberlain C P. Relative Scales of Thermal-and Fluid Infiltration-Driven Metamorphism in Fold Nappes, New England, USA[J]. American Mineralogist, 1991, 76(5):713-727.
[31] Morse J W, Luther G W I. Chemical Influences on Trace Metal-Sulfide Interactions in Anoxic Sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19):3373-3378.
[32] Scholz F, Neumann T. Trace Element Diagenesis in Pyrite-Rich Sediments of the Achterwasser Lagoon, SW Baltic Sea[J]. Marine Chemistry, 2007, 107(4):516-532.
[33] Mandal B K, Suzuki K T. Arsenic Round the World:A Review[J]. Talanta, 2002, 58(1):201-235.
[34] Simon G, Huang H, Penner-Hahn J E, et al. Oxidation State of Gold and Arsenic in Gold-Bearing Arsenian Pyrite[J]. American Mineralogist, 1999, 84(7/8):1071-1079.
[35] Chen J H, Li Y Q, Zhong S P, et al. DFT Simulation of the Occurrences and Correlation of Gold and Arsenic in Pyrite[J]. American Mineralogist, 2013, 98(10):1765-1771.
[36] Feng K, Fan H R, Hu F F, et al. Involvement of Anomalously As-Au-Rich Fluids in the Mineralization of the Heilan'gou Gold Deposit, Jiaodong, China:Evidence from Trace Element Mapping and In-Situ Sulfur Isotope Composition[J]. Journal of Asian Earth Sciences, 2017, 160:304-321.
[37] Reich M, Kesler S E, Utsunomiya S, et al. Solubility of Gold in Arsenian Pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11):2781-2796.
[38] Seward T M. Thio Complexes of Gold and the Transport of Gold in Hydrothermal Ore Solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37(3):379-399.
[39] Deditius A P, Reich M, Kesler S E, et al. The Coupled Geochemistry of Au and As in Pyrite from Hydrothermal Ore Deposits[J]. Geochimica et Cosmochimica Acta, 2014, 140:644-670.
[40] 杨荣生, 陈衍景, 谢景林. 甘肃阳山金矿床含砷黄铁矿及毒砂的XPS研究[J]. 岩石学报, 2009, 25(11):2791-2800. Yang Rongsheng, Chen Yanjing, Xie Jinglin. X-Ray Photoelectron Spectroscopic Study on Arsenian Pyrite and Arsenopyrite from the Yangshan Gold Deposit,Gansu Province (North China)[J]. Acta Petrologica Sinica, 2009, 25(11):2791-2800.
[41] 毛世东, 杨荣生, 秦艳, 等. 甘肃阳山金矿田载金矿物特征及金赋存状态研究[J]. 岩石学报, 2009, 25(11):2776-2790. Mao Shidong, Yang Rongsheng, Qin Yan, et al.Characteristics of Gold-Bearing Mineral and Occurrence of Gold in the Yangshan Gold Field, Gansu Province[J]. Acta Petrologica Sinica, 2009, 25(11):2776-2790.
[1] 李洪梁, 李光明, 丁俊, 张志, 卿成实, 付建刚, 凌晨, 刘宇奇. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1289-1303.
[2] 代军治, 高菊生, 钱壮志, 张龙斌, 周金隆, 李平, 高毅. 小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素组成及成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1669-1682.
[3] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070.
[4] 王运, 胡宝群, 王倩, 李佑国, 孙占学, 郭国林. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 719-735.
[5] 齐钒宇, 张志, 祝新友, 李永胜, 甄世民, 公凡影, 巩小栋. 湖南宝山铜铅锌多金属矿床矿物学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 754-768.
[6] 谈树成, 郭翔宇, 何小虎, 谢志鹏, 张亚辉, 李惠民, 郝爽. 云南个旧锡多金属矿床锡石矿物化学特征及其成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 736-753.
[7] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[8] 王春连,刘成林,徐海明,王立成,沈立建. 湖北江陵凹陷古新统沙市组四段硫酸盐硫同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(3): 691-703.
[9] 李碧乐,沈鑫,陈广俊,杨延乾,李永胜. 青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1676-1687.
[10] 袁波,陈世悦,袁文芳,朱建伟. 济阳坳陷沙河街组锶硫同位素特征[J]. J4, 2008, 38(4): 613-0617.
[11] 曾庆栋,刘建明,贾长顺,万志民,于昌明,叶杰,刘红涛. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因:地质和硫同位素证据[J]. J4, 2007, 37(4): 659-0667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!