吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1373-1386.doi: 10.13278/j.cnki.jjuese.20190276

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

青海省巴斯湖铅锌矿床M9矿体成因探讨——流体包裹体和H-O-S同位素约束

孙永刚1,2, 李碧乐1, 孙丰月1, 董峻麟3, 钱烨1, 姚振3   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 吉林省地质调查院, 长春 130102;
    3. 青海省第五地质矿产勘查院, 西宁 810012
  • 收稿日期:2019-12-18 出版日期:2020-09-26 发布日期:2020-09-29
  • 作者简介:孙永刚(1988-),男,博士研究生,主要从事热液矿床成矿理论与预测研究,E-mail:xg429805791@163.com
  • 基金资助:
    国家自然科学基金项目(41272093,41272095);中国地质调查局项目(12120114080901)

Genesis of M9 Ore Body of Basihu Pb-Zn Deposit in Qinghai Province: Constraints of Fluid Inclusions and H-O-S Isotopic Evidences

Sun Yonggang1,2, Li Bile1, Sun Fengyue1, Dong Junlin3, Qian Ye1, Yao Zhen3   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Geological Survey Institute of Jilin Province, Changchun 130102, China;
    3. No.5 Geologic Exploration and Mineral Resource Institute of Qinghai Province, Xining 810012, China
  • Received:2019-12-18 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by National Natural Science Foundation of China (41272093,41272095) and Project of China Geological Survey (12120114080901)

摘要: 巴斯湖铅锌矿床位于三江多金属成矿带北段的青海省沱沱河地区,M9铅锌矿体赋存于下二叠统九十道班组碎裂蚀变灰岩和泥晶灰岩中,主控矿构造为切割地层的NWW向断裂构造。成矿过程分为石英-黄铁矿阶段(Ⅰ)、石英-重晶石-多金属硫化物阶段(Ⅱ)和碳酸盐-石英阶段(Ⅲ)3个阶段。成矿流体包裹体以气液两相为主,成矿Ⅰ阶段均一温度为315.1~365.9℃,盐度(w(NaCl))为8.81%~11.46%;成矿Ⅱ阶段均一温度为231.1~294.3℃,盐度为4.80%~10.49%;成矿Ⅲ阶段均一温度为155.1~233.7℃,盐度为2.41%~6.88%。成矿流体为典型的中温、低盐度流体,均一温度和盐度从成矿早期到晚期逐渐降低。H-O同位素数据显示成矿流体为岩浆水和大气水的混合水,早期主要为岩浆水,晚期有大气降水的混入;S同位素数据显示成矿物质来源与新生代深部钾质岩浆活动有关。巴斯湖铅锌矿床M9矿体成因类型为中温热液脉型,形成于印度-欧亚板块晚碰撞造山作用引起的伸展环境。

关键词: 沱沱河地区, 流体包裹体, H-O-S同位素, 热液脉型矿床, 巴斯湖铅锌矿床

Abstract: Basihu Pb-Zn deposit is located in Tuotuohe area of Qinghai Province in the northern part of Sanjiang polymetallic metallogenic belt. The M9 Pb-Zn ore body is hosted by the cataclastic alterated limestone and micrite of the Lower Permian Jiushidaoban Formation, and the main ore-controlling structure is the NWW trending fault that cuts through the formation. The mineralization process can be divided into three stages: Quartz-pyrite stage (Ⅰ), quartz-barite-polymetallic sulfide stage (Ⅱ), and carbonate-quartz stage (Ⅲ). The ore-forming fluid inclusions are dominated by gas-liquid two-phase fluid inclusions. The homogenization temperatures of fluid inclusions in stage I range from 315.1 to 365.9 ℃, with salinities (w (NaCl)) of 8.81%-11.46%. In stage Ⅱ, the homogenization temperatures range from 231.1 to 294.3 ℃, with salinities of 4.80%-10.49%. And in stage Ⅲ, the homogenization temperatures range from 155.1 to 233.7 ℃, with salinities of 2.41%-6.88%, indicating a typical medium temperature and low salinity fluid. The temperature and salinity decreased gradually from early to late mineralization. The H-O isotope data show that the mineralizing fluid was a mixture of magmatic water and meteoric water, mainly magmatic water in the early stage and mixed with meteoric water in the later stage. The S isotope data indicate that the ore-forming material source was related to the deep potassium magmatic activity in Cenozoic. The genetic type of M9 ore body in Basihu Pb-Zn deposit was a mesothermal hydrothermal vein type, and was formed in an extensional environment related to the late stage of the intracontinental orogenesis resulting from the India-Asia collision.

Key words: Tuotuohe area, fluid inclusions, H-O-S isotopes, hydrothermal vein deposit, Basihu Pb-Zn deposit

中图分类号: 

  • P618.4
[1] 侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ:晚碰撞转换成矿作用[J].矿床地质,2006,25(5):521-543. Hou Zengqian, Pan Guitang, Wang Anjian,et al.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ:Mineralization in Late-Collisional Transformation Setting[J].Mineral Deposits,2006,25(5):521-543.
[2] Deng Jun,Wang Qingfei. Gold Mineralization in China:Metallogenic Provinces,Deposit Types and Tectonic Framework[J].Gondwana Research,2016,36:219-274.
[3] Li Gongjian,Wang Qingfei,Huang Yuhan,et al.Petrogenesis of Middle Ordovician Peraluminous Granites in the Baoshan Block:Implications for the Early Paleozoic Tectonic Evolution Along East Gondwana[J].Lithos,2016,245:76-92.
[4] Xue Chunji,Zeng Rong,Liu Shuwen,et al.Geologic,Fluid Inclusion and Isotopic Characteristics of the Jinding Zn-Pb Deposit,Western Yunnan,South China:A Review[J].Ore Geology Reviews,2007,31(1/2/3/4):337-359.
[5] He Longqing,Song Yucai,Chen Kaixu,et al.Thrust-Controlled,Sediment-Hosted,Himalayan Zn-Pb-Cu-Ag Deposits in the Lanping Foreland Fold Belt,Eastern Margin of Tibetan Plateau[J].Ore Geology Reviews,2009,36(1/2/3):106-132.
[6] Liu Yingchao,Hou Zengqian,Yang Zhusen,et al.Geology and Chronology of the Zhaofayong Carbonate-Hosted Pb-Zn Ore Cluster:Implication for Regional Pb-Zn Metallogenesis in the Sanjiang Belt,Tibet[J].Gondwana Research,2016,35:15-26.
[7] Liu Yingchao,Hou Zengqian,Yang Zhusen,et al.Formation of the Dongmozhazhua Pb-Zn Deposit in the Thrust-Fold Setting of the Tibetan Plateau,China:Evidence from Fluid Inclusion and Stable Isotope Data[J].Resource Geology,2011,61(4):384-406.
[8] Liu Yingchao,Yang Zhusen,Tian Shihong,et al.Fluid Origin of Fluorite-Rich Carbonate-Hosted Pb-Zn Mineralization of the Himalayan-Zagros Collisional Orogenic System:A Case Study of the Mohailaheng Deposit,Tibetan Plateau,China[J].Ore Geology Reviews,2015,70:546-561.
[9] 钱烨.青藏高原沱沱河地区成矿背景及铅锌成矿作用[D].长春:吉林大学,2014. Qian Ye. Metallogenic Setting and Metallogenesis Lead and Zinc in Tuotuohe Region, Qinghai-Tibet Plateau[D]. Changchun:Jilin University,2014.
[10] 宋玉财,侯增谦,王贵仁,等."三江"北段沱沱河地区的成矿规律与找矿方向[J].矿床地质,2015,34(1):1-20. Song Yucai,Hou Zengqian,Wang Guiren,et al.Metallogenic Regularity and Ore Exploration Targeting in Tuotuohe Area,Northern Sanjiang Orogenic Belt[J].Mineral Deposits,2015,34(1):1-20.
[11] 孙永刚.青海沱沱河地区楚多曲铅锌矿控矿构造特征和矿床成因研究[D].长春:吉林大学,2016. Sun Yonggang.Study on Ore-Controlling Structure Characteristics and Ore Genesis of Chuduoqu Lead-Zinc Mine in Tuotuohe Region, Qinghai Province[D].Changchun:Jilin University,2016.
[12] Sun Yonggang,Li Bile,Sun Fengyue,et al.Ore Genesis of the Chuduoqu Pb-Zn-Cu Deposit in the Tuotuohe Area,Central Tibet:Evidence from Fluid Inclusions and C-H-O-S-Pb Isotopes Systematics[J]. Minerals,2019,9(5):285.
[13] 董峻麟,王利军.西藏那曲安多县巴斯湖多金属矿普查[R].西宁:青海省第五地质矿产勘查院,2015. Dong Junlin,Wang Lijun.General Survey of Basihu Polymetallic Deposit in Amdo County,Nagqu District,Tibet[R].Xining:No.5 Geologic Exploration and Mineral Resource Institute of Qinghai Province,2015.
[14] 董峻麟.青海沱沱河地区巴斯湖多金属矿矿床地质特征及成因探讨[D].长春:吉林大学,2018. Dong Junlin.Study on Geological Characteristics and Genesis of Basihu Polymetalic Deposit,Tuotuohe Area,Qinhai Province[D].Changchun:Jilin University,2018.
[15] Spurlin M S,Yin A,Horton B K,et al.Structural Evolution of the Yushu-Nangqian Region and Its Relationship to Syncollisional Igneous Activity,East-Central Tibet[J].Bulletin of the Geological Society of America,2005,117(9/10):1293-1317.
[16] Zhu Dicheng,Zhao Zhidan,Niu Yaoling,et al.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau[J].Gondwana Research,2013,23(4):1429-1454.
[17] Song Yucai,Yang Tiannan,Zhang Hongrui,et al.The Chaqupacha Mississippi Valley-Type Pb-Zn Deposit,Central Tibet:Ore Formation in a Fold and Thrust Belt of the India-Asia Continental Collision Zone[J].Ore Geology Reviews,2015,70:533-545.
[18] 李政.青海省沱沱河地区茶曲帕查铅锌矿床的成因研究[D].北京:北京科技大学,2008:1-77. Li Zheng.The Ore Forming Genesis Research of Chaqupacha Lead-Zinc Deposits in Qinghai Province Tuotuohe Area[D].Beijing:Beijing University of Science and Technology,2008:1-77.
[19] 段志明,李勇,张毅,等.青藏高原唐古拉山中新生代花岗岩锆石U-Pb年龄、地球化学特征及其大陆动力学意义[J].地质学报,2005,79(1):88-97. Duan Zhiming,Li Yong,Zhang Yi,et al. Zircon U-Pb Age,Continent Dynamics Significance and Geochemical Characteristics of the Mesozoic and Cenozoic Granites from the Tanggula Range in the Qinghai-Tibet Plateau[J].Acta Geologica Sinica,2005,79(1):88-97.
[20] 李莉,白云山,牛志军,等.羌塘雀莫错一带基性超基性岩群基本特征及构造环境[J].沉积与特提斯地质,2004,24(1):27-34. Li Li,Bai Yunshan,Niu Zhijun,et al.The Ultrabasic and Basic Rocks and Their Tectonic Settings in the Qoimaco Region,Qiangtang on the Qinghai-Xizang Plateau[J].Sedimentary Geology and Tethyan Geology,2004,24(1):27-34.
[21] 王国志.青海沱沱河地区扎拉夏格涌铜铅锌矿矿床地质特征及成因研究[D].长春:吉林大学,2017. Wang Guozhi.Study on Geological Features and Genetic of Zhalaxiageyong Cu-Pb-Zn Deposit in the Tuotuohe Area,Qinghai[D].Changchun:Jilin University,2017.
[22] Li Yalin,Wang Chengshan,Zhao Xixi,et al.Cenozoic Thrust System,Basin Evolution,and Uplift of the Tanggula Range in the Tuotuohe Region,Central Tibet[J].Gondwana Research,2012,22(2):482-492.
[23] Yang Tiannan,Zhang Hongrui,Liu Yanxue,et al.Permo-Triassic Arc Magmatism in Central Tibet:Evidence from Zircon U-Pb Geochronology,Hf Isotopes,Rare Earth Elements,and Bulk Geochemistry[J]. Chemical Geology,2011,284(3/4):270-282.
[24] Yang Tiannan,Hou Zengqian,Wang Yu,et al.Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet:Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture[J].Tectonics,2012,31(4):1-20.
[25] Li Yalin,Wang Chengshan,Ma Chao,et al.Balanced Cross-Section and Crustal Shortening Analysis in the Tanggula-Tuotuohe Area,Northern Tibet[J].Journal of Earth Science,2011,22(1):1-10.
[26] 张玉修,张开均,李勇,等.西藏羌塘盆地东部中-上侏罗统沉积特征及沉积相划分[J].大地构造与成矿学,2007,31(1):52-62. Zhang Yuxiu,Zhang Kaijun,Li Yong,et al.Characteristics and Sedimentary Facies of the Middle-Upper Jurassic Clastic Rocks in Qiangtang Basin,Tibet[J]. Geotectonica et Metallogenia,2007,31(1):52-62.
[27] Qian Ye,Sun Fengyue,Li Bile,et al.Early Permian-Late Triassic Magmatism in the Tuotuohe Region of the Qinghai-Tibet Plateau:Constraints on the Tectonic Evolution of the Western Segment of the Jinshajiang Suture[J].Acta Geologica Sinica,2014,88(2):498-516.
[28] Hao Hongda,Song Yucai,Li Liansong,et al.Characteristics of Breccias and C-O-Sr-S Isotope Geochemistry of the Duocaima Pb-Zn Deposit in Tuotuohe,Qinghai Province:Implications for the Ore-Forming Process[J].Acta Geologica Sinica,2015,89(5):1568-1587.
[29] 侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J].矿床地质,2008,27(2):123-144. Hou Zengqian,Song Yucai,Li Zheng,et al.Thrust-Controlled,Sediments-Hosted Pb-Zn-Ag-Cu Deposits in Eastern and Northern Margins of Tibetan Orogenic Belt:Geological Features and Tectonic Model[J]. Mineral Deposits,2008,27(2):123-144.
[30] 李亚林,王成善,伊海生,等.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报,2006,80(8):1118-1130. Li Yalin,Wang Chengshan,Yi Haisheng,et al.Cenozoic Thrust System and Uplifting of the Tanggula Mountain,Northern Tibet[J].Acta Geologica Sinica,2006,80(8):1118-1130.
[31] Wang Jianghai,Yin An,Harrison T M,et al.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone[J].Earth and Planetary Science Letters,2001,188(1/2):123-133.
[32] 丁林,周勇,张进江,等.藏北鱼鳞山新生代火山岩及风化壳复合堆积物的组成和时代[J].科学通报,2000,45(14):1475-1481. Ding Lin,Zhou Yong,Zhang Jinjiang,et al.Geologic Relationships and Geochronology of the Cenozoic Volcanoes and Interbedded Weathered Mantles of Yulinshan in Qiangtang,North Tibet[J].Chinese Science Bulletin,2000,45(14):1475-1481.
[33] 赖绍聪,刘池阳,O'Reilly S Y.北羌塘新第三纪高钾钙碱火山岩系的成因及其大陆动力学意义[J].中国科学:D辑,2001,31(增刊1):34-42. Lai Shaocong,Liu Chiyang,O'Reilly S Y.Petrogenesis and Its Significance to Continental Dynamics of the Neogene High-Potassium Calc-Alkaline Volcanic Rock Association from North Qiangtang, Tibetan Plateau[J].Science in China:Series D,2001,31(Sup. 1):34-42.
[34] Xia Linqi,Li Xiangmin,Ma Zhongping,et al. Cenozoic Volcanism and Tectonic Evolution of the Tibetan Plateau[J].Gondwana Research,2011,19(4):850-866.
[35] Roger F,Tapponnier P,Arnaud N,et al.An Eocene Magmatic Belt Across Central Tibet:Mantle Subduction Triggered by the Indian Collision[J].Terra Nova,2000,12(3):102-108.
[36] Lowenstern J B. A Review of the Contrasting Behavior of Two Magmatic Volatiles:Chlorine and Carbon Dioxide[J]. Journal of Geochemical Exploration,2000,69/70:287-290.
[37] Lowenstern J B.Carbon Dioxide in Magmas and Implications for Hydrothermal Systems[J].Mineralium Deposita,2001,36:490-502.
[38] Bodnar R J.Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions[J].Geochimica et Cosmochimica Acta,1993,57(3):683-684.
[39] Clayton R N,O'Neil J R,Mayeda T K.Oxygen Isotope Exchange Between Quartz and Water[J].Journal of Geophysical Research,1972,77(17):3057-3067.
[40] Taylor H P.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J].Economic Geology,1974,69:843-883.
[41] Barnes H L. Solubilities of Ore Minerals[M]//Barnes H L.Geochemistry of Hydrothermal Ore Deposits.2nd Ed.New York:John Wiley and Sons,1979:404-460.
[42] Rye R O,Ohmoto H.Sulfur and Carbon Isotopes and Ore Genesis:A Review[J].Economic Geology,1974:69:826-842.
[43] Hedenquist J W,Arribas A,Reynolds T J.Evolution of an Intrusion-Centered Hydrothermal System:Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits,Philippines[J].Economic Geology,1998,93:373-404.
[44] 梁小龙,孙景贵,邱殿明,等.大兴安岭西坡比利亚谷银铅锌多金属矿床成因[J].吉林大学学报(地球科学版),2020,50(3):781-799.doi:10.13278/j.cnki.jjuese.20190159. Liang Xiaolong,Sun Jinggui,Qiu Dianming,et al.Genesis of Biliya Valley Ag-Pb-Zn Polymetallic Deposit on Western Slope of Great Xing'an Range[J].Journal of Jilin University(Earth Science Edition),2020,50(3):781-799.doi:10.13278/j.cnki.jjuese.20190159.
[45] Hoefs J.Stable Isotope Geochemistry[M]. 4th ed. Berlin:Springer Verlag,1997:199-201.
[46] Ohmoto H.Stable Isotope Geochemistry of Ore Deposits[J].Reviews in Mineralogy and Geochemistry,1986,16(1):491-559.
[47] 张翀,宋玉财,侯增谦,等.青海沱沱河地区那日尼亚铅锌矿床地质与地球化学研究[J].岩石矿物学杂志,2013,32(3):291-304. Zhang Chong,Song Yucai,Hou Zengqian,et al.Geological and Geochemical Studies of the Nariniya Lead-Zinc Deposit in Tuotuohe Area,Qinghai Province[J].Acta Petrologica et Mineralogica,2013,32(3):291-304.
[48] 栗亚芝,孔会磊,南卡俄吾,等.青海省纳日贡玛斑岩型铜钼矿床成矿岩体的物质来源及成矿背景分析[J].地质科技情报,2015,34(1):1-9. Li Yazhi,Kong Huilei,Nanka E W,et al.Analysis of Matter Source and Metallogenic Setting of Metallogenic Rock of Narigongma Porphyry Copper-Molybdenum Deposit in Qinhai Province[J].Geological Science and Technology Information,2015,34(1):1-9.
[49] 张宏飞,高山.地球化学[M].北京:地质出版社,2012. Zhang Hongfei,Gao Shan.Geochemistry[M].Beijing:Geological Publishing House,2012.
[50] Chung S L,Lo C H,Lee T Y,et al. Diachronous Uplift of the Tibetan Plateau Starting 40 Myr Ago[J].Nature,1998,394:769-773.
[51] 赵志丹,莫宣学,董国臣,等.青藏高原Pb同位素地球化学及其意义[J].现代地质,2007,21(2):265-274. Zhao Zhidan,Mo Xuanxue,Dong Guochen,et al.Pb Isotopic Geochemistry of Tibetan Plateau and Its Implications[J].Geoscience,2007,21(2):265-274.
[52] 费红彩,肖荣阁.成矿流体演化与成矿物理化学[J].矿物岩石地球化学通报,2002,21(2):139-144. Fei Hongcai,Xiao Rongge.Ore-Forming Fluid Evolution and Metallogenetic Physical Chemistry[J].Bulletin of Mineralogy,Petrology and Geochemistry,2002,21(2):139-144.
[53] Yin A,Harrison T M.Geologic Evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences,2000,28:211-280.
[54] Aitchison J C,Xia Xiaoping,Baxter A T,et al.Detrital Zircon U-Pb Ages Along the Yarlung-Tsangpo Suture Zone,Tibet:Implications for Oblique Convergence and Collision Between India and Asia[J].Gondwana Research,2011,20(4):691-709.
[55] Zhang Jinjiang,Santosh M,Wang Xiaoxian,et al.Tectonics of the Northern Himalaya Since the India-Asia Collision[J].Gondwana Research,2012,21(4):939-960.
[56] 许志琴,杨经绥,李海兵,等.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社,2007. Xu Zhiqin,Yang Jingsui,Li Haibing,et al.Orogenic Plateau:Terrane Amalgamation,Collisional Orogeny and Uplifting Mechanism of the Qinghai-Tibet Plateau[M].Beijing:Geological Publishing House,2007.
[1] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[2] 郝宇杰, 商青青, 任云生, 刘小禾, 陈聪. LA-ICP-MS原位分析白钨矿稀土元素[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1029-1041.
[3] 王勇军, 刘颜, 黄鑫, 徐昌, 沈立军, 张业智, 张兆民. 胶东牟乳成矿带范家庄金矿床成矿流体特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1012-1028.
[4] 孙丰月, 王睿, 王一存, 李顺达, 王可勇, 石开拓, 孙清飞, 王文元. 内蒙古碾子沟钼矿床成矿流体来源、演化及成矿机理[J]. 吉林大学学报(地球科学版), 2020, 50(3): 768-780.
[5] 梁小龙, 孙景贵, 邱殿明, 徐智涛, 谷小丽, 任泽宁. 大兴安岭西坡比利亚谷银铅锌多金属矿床成因[J]. 吉林大学学报(地球科学版), 2020, 50(3): 781-799.
[6] 赵迎冬. 流体包裹体中盐度分析与应用——以福山凹陷为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1261-1269.
[7] 吴猛, 李怡欣, 刘桂香. 黑龙江省老柞山金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1353-1364.
[8] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[9] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[10] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[11] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[12] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[13] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[14] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[15] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!