吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 35-51.doi: 10.13278/j.cnki.jjuese.20190272

• 地质与资源 • 上一篇    

中国致密砂岩储层流体可动性及其影响因素

吴蒙1,2, 秦勇1, 王晓青3, 李国璋1, 朱超1, 朱士飞2   

  1. 1. 煤层气资源与成藏过程教育部重点实验室, 江苏 徐州 221008;
    2. 江苏地质矿产设计研究院, 江苏 徐州 221006;
    3. 河南理工大学资源环境学院, 河南 焦作 454000
  • 收稿日期:2019-12-16 发布日期:2021-02-02
  • 通讯作者: 秦勇(1957-),男,教授,博士生导师,主要从事能源地质教学和非常规天然气方面的研究,E-mail:yongqin@cumt.edu.cn E-mail:yongqin@cumt.edu.cn
  • 作者简介:吴蒙(1990-),男,工程师,主要从事非常规天然气方面的研究,E-mail:476452783@qq.com
  • 基金资助:
    国家科技重大专项项目(2016ZX050660104);国家自然科学基金项目(42002193)

Fluid Mobility and Its Influencing Factors of Tight Sandstone Reservoirs in China

Wu Meng1,2, Qin Yong1, Wang Xiaoqing3, Li Guozhang1, Zhu Chao1, Zhu Shifei2   

  1. 1. Key Laboratory of CBM Resource and Reservoir Formation Process, Ministry of Education, Xuzhou 221008, Jiangsu, China;
    2. Jiangsu Mineral Resources and Geological Design and Research Institute, Xuzhou 221006, Jiangsu, China;
    3. College of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
  • Received:2019-12-16 Published:2021-02-02
  • Supported by:
    Supported by the National Science and Technology Major Project of China(2016ZX050660104) and the National Natural Science Foundation of China(42002193)

摘要: 致密砂岩储层流体可动性对油气开发、预测和评价具有重要意义。查阅国内近十年相关成果,对致密储层流体可动性的相关参数、测试方法、分布特征及其影响因素进行了分析。发现致密砂岩储层的弛豫时间T2谱截止值为0.540~41.600 ms,可动流体孔隙度为0.12%~14.35%,可动流体饱和度为2.16%~90.30%,Ⅲ—Ⅳ类储层是致密砂岩储层的主要类型,致密储层可动流体的孔喉半径下限为0.013~0.110 μm,高压压汞、核磁共振、恒速压汞识别的孔喉半径下限分别为0.037 5、0.070 0~0.200 0、0.120 0 μm,水膜厚度为0.05~1.00 μm。统计分析显示,核磁共振、恒速压汞测得致密储层可动流体饱和度偏低;水膜厚度是影响致密砂岩储层流体渗流的主要因素;低煤阶煤层可动流体饱和度最高,致密砂岩储层次之,页岩储层最低;致密砂岩储层约是页岩储层、低煤阶煤层可动流体孔隙度的10倍;砂岩储层可动流体赋存于孔隙和喉道中,受孔隙和喉道共同控制;致密砂岩具有喉道分布集中,有效孔隙发育差,孔隙大部分为喉道半径小于1.000 μm的微细孔;喉道半径越集中、孔喉半径比越小、有效喉道半径越大,越有利于储层流体的渗流;砂岩渗透率(<2×10-3 μm2)越低,可动流体参数衰减越快;渗透率(>2×10-3 μm2)越高,可动流体参数升高越缓慢;喉道半径是控制致密砂岩储层流体可动性的主要因素。

关键词: 致密砂岩, 流体可动性, 微观孔隙结构, 润湿性, 喉道半径

Abstract: Fluid mobility of tight sandstone reservoirs is of great significance for oil and gas development, prediction,and evaluation. According to relevant domestic achievements in the past ten years, the fluidity parameters, test methods, distribution characteristics,and influencing factors of tight reservoirs were analyzed. It is found that the T2 value of tight sandstone reservoirs is 0.540-41.600 ms, the porosity of the movable fluid is 0.12%-14.35%, the saturation of the movable fluid is 2.16%-90.30%, the lower limit of the pore throat radius of movable fluids in tight reservoirs is 0.013-0.110 μm, the lower limit of pore-throat radius of high pressure mercury injection, nuclear magnetic resonance,and constant velocity mercury injection are 0.037 5 μm, 0.070 0-0.200 0 μm,and 0.120 0 μm respectively, and the water film thickness is 0.05-1.00 μm. Ⅲ-Ⅳ reservoirs are the main types of tight sandstone reservoirs. Statistical analysis shows that the mobile flow saturation of tight reservoirs is low, which is measured by nuclear magnetic resonance and constant velocity mercury injection. The water film thickness is the main factor affecting fluid seepage in tight sandstone reservoirs. The saturation of movable fluid of low-rank coal seams is the highest, the second is that of tight sandstone reservoirs, and the lowest is that of shale reservoirs. The movable fluid porosity of tight sandstone reservoirs is 10 times more than that of shale reservoirs and low-rank coal seams. The movable fluids in sandstone reservoirs exist in pores and throats, and are controlled by these pores and throats. Tight sandstone has a concentrated throat distribution and poor effective pore development, and most of the pores are micropores with a throat diameter less than 1.000 μm. The more concentrated the throat radius, the larger the effective throat radius, and the more favorable the seepage of the reservoir fluid. Lower sandstone permeability (<2×10-3 μm2) leads to faster decay of movable fluid parameters; and higher permeability (>2×10-3 μm2) leads to slower rise of movable fluid parameters. The throat radius is the main factor controlling fluid mobility of tight reservoirs.

Key words: tight sandstone, fluid mobility, micropore structure, wettability, pore-throat radius

中图分类号: 

  • TE122.221
[1] 郭秋麟, 陈宁生, 胡俊文, 等. 致密砂岩气聚集模型与定量模拟探讨[J]. 天然气地球科学, 2012, 23(2):199-207. Guo Qiulin, Chen Ningsheng, Hu Junwen, et al. Geo-Model of Tight Sandstone Gas Accumulation and Quantitative Simulation[J]. Natural Gas Geoscience, 2012, 23(2):199-207.
[2] 刘伟, 林承焰, 王国民, 等. 柴西北地区油泉子油田低渗透储层特征与成因分析[J]. 石油学报, 2009, 30(3):417-421. Liu Wei, Lin Chengyan, Wang Guomin, et al. Characteristics of Low Permeability Reservoir and Its Origin in Youquanzi Oilfield in the Northwest Part of Qaidam Basin[J]. Acta Petrolei Sinica, 2009, 30(3):417-421.
[3] 杨华, 付金华, 刘新社, 等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发, 2012, 39(3):295-303. Yang Hua, Fu Jinhua, Liu Xinshe, et al. Accumulation Conditions and Exploration and Development of Tight Gas in the Upper Paleozoic of the Ordos Basin[J].Petroleum Exploration and Development, 2012, 39(3):295-303.
[4] 邹才能, 陶士振, 杨智, 等. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 2012, 31(4):312-322. Zou Caineng, Tao Shizhen, Yang Zhi, et al. New Advance in Unconventional Petroleum Exploration and Research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4):313-322.
[5] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1):140-149. Li Min, Wang Hao, Chen Meng. Distribution Characteristics and Influencing Factors of Movable Fluid in Tight Sandstone Reservoirs:A Case Study of Lucaogou Formation in Jimsar Sag, NW China[J]. Lithologic Reservoirs, 2018, 30(1):140-149.
[6] 肖开华, 冯动军, 李秀鹏. 川西新场须四段致密砂岩储层微观孔喉与可动流体变化特征[J]. 石油实验地质, 2014, 36(1):77-82. Xiao Kaihua, Feng Dongjun, Li Xiupeng. Micro Pore and Throat Characteristics and Moveable Fluid Variation of Tight Sandstone in 4th Member of Xujiahe Formation, Xinchang Gas Field, Western Sichuan Basin[J]. Petroleum Geology & Experiment, 2014, 36(1):77-82.
[7] 吴蒙, 朱超, 秦云虎, 等. 临兴地区山西组致密砂岩气开采潜力地质评价方法[J]. 吉林大学学报(地球科学版), 2020, 50(4):991-1002. Wu Meng, Zhu Chao, Qin Yunhu, et al. Geological Evaluation Method of Tight Sandstone Gas Exploitation Potential in Shanxi Formation in Linxing Area[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4):991-1002.
[8] 李海波, 郭和坤, 李海舰, 等. 致密储层束缚水膜厚度分析[J]. 天然气地球科学, 2015, 26(1):186-192. Li Haibo, Guo Hekun, Li Haijian, et al. Thickness Analysis of Bound Water Film in Reservoir[J]. Natural Gas Geoscience, 2015, 26(1):186-192.
[9] 计玮. 致密砂岩气储层气水相渗特征及其影响因素:以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J].吉林大学学报(地球科学版), 2019, 49(6):1540-1551. Ji Wei. Gas Water Relative Flow of Tight Sandstone Gas Reservoirs and Its Influencing Factors:Case Study of Member 8 of Permian Xiashihezi Formation and Member 1 of Permian Shanxi Formation in Shaan Well 234-235 Area of Sulige Gas-Field in Ordos Basin[J].Journal of Jilin University (Earth Science Edition), 2019, 49(6):1540-1551.
[10] 任颖惠, 吴珂, 何康宁, 等. 核磁共振技术在研究超低渗-致密油储层可动流体中的应用:以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1):103-110. Ren Yinghui, Wu Ke, He Kangning, et al. Application of NMR Technique to Movable Fluid of Ultra-Low Permeability and Tight Reservoir:A Case Study on the Yangchang Formation in Longdong Area, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(1):103-110.
[11] Gao S, Ye L, Xiong W, et al. Nuclear Magnetic Resonance Measurements of Original Water Saturation and Mobile Water Saturation in Low Permeability Sandstone Gas[J]. Chinese Physics Letters, 2010, 27(12):217-218.
[12] Jiang G, Li Y, Zhang M. Evaluation of Gas Wettability and Its Effects on Fluid Distribution and Fluid Flow in Porous Media[J]. Petroleum Science, 2013, 10(4):515-527.
[13] Legchenko A, Baltassat J M, Beauce A, et al. Nuclear Magnetic Resonance As a Geophysical Tool for Hydrogeologists[J]. Journal of Applied Geophysics, 2002, 50(2):21-46.
[14] 屈雪峰, 孙卫, 雷启鸿, 等. 华庆油田低渗透砂岩储层可动流体饱和度及其影响因素[J]. 西安石油大学学报(自然科学版), 2016, 31(2):93-98. Qu Xuefeng, Sun Wei, Lei Qihong, et al. Study on Saturation of Movable Fluid in the Low-Permeability Sandstone Reservoirs of Huaqing Oilfield and Its Influencing Factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(2):93-98.
[15] 庞振宇, 李艳, 赵习森, 等. 特低渗储层可动流体饱和度研究:以甘谷驿油田长6储层为例[J]. 地球物理学进展, 2017, 32(2):702-708. Pang Zhenyu, Li Yan, Zhao Xisen, et al. Study on Movable Fluid Saturation in Ultra-Low Permeability Reservoir:Taking Chang 6 Reservoir in Ganguyi Oil Field as an Example[J]. Progress in Geophysics, 2017, 32(2):702-708.
[16] 司马立强, 王超, 吴丰, 等. 川西马井气田蓬莱镇组致密砂岩储层可动水饱和度计算方法[J]. 测井技术, 2017, 41(2):199-204. Sima Liqiang, Wang Chao, Wu Feng, et al. Calculation of Mobile Water Saturation in Tight Sandstone Reservoirs of Penglaizhen Formation, Western Sichuan Basin[J]. Well Logging Technology, 2017, 41(2):199-204.
[17] 冯军, 张博为, 冯子辉, 等. 松辽盆地北部致密砂岩储集层原油可动性影响因素[J]. 石油勘探与开发, 2019, 46(2):312-321. Feng Jun, Zhang Bowei, Feng Zihui, et al. Crude Oil Mobility and Its Controlling Factors in Tight Sand Reservoirs in Northern Songliao Basin, China[J]. Petroleum Exploration and Development, 2019, 46(2):312-321.
[18] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例[J]. 石油与天然气地质, 2015, 36(5):774-779. Ren Xiaoxia, Li Aifen, Wang Yongzheng, et al. Pore Structure of Tight Sand Reservoir and Its Influence on Percolation:Taking the Chang 8 Reservoir in Maling Oilfield in Ordos Basin as an Example[J]. Oil & Gas Geology, 2015, 36(5):774-779.
[19] 司马立强, 王超, 王亮, 等. 致密砂岩储层孔隙结构对渗流特征的影响:以四川盆地川西地区上侏罗统蓬莱镇组储层为例[J]. 天然气工业, 2016, 36(12):18-25. Sima Liqiang, Wang Chao, Wang Liang, et al. Effect of Pore Structure on the Seepage Characteristics of Tight Sandstone Reservoirs:A Case Study of Upper Jurassic Penglaizhen Formation Reservoirs in the Western Sichuan Basin[J]. Natural Gas Industry, 2016, 36(12):18-25.
[20] 柳娜, 周兆华, 任大忠, 等. 致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(5):1-12. Liu Na, Zhou Zhaohua, Ren Dazhong, et al. Distribution Characteristics and Controlling Factors of Movable Fluid in Tight Sandstones Gas Reservoir:A Case Study of the Eighth Member of Xiashihezi Formation and the First Member of Shanxi Formation in Western Sulige Gas Field[J]. Lithologic Reservoirs, 2019, 31(5):1-12.
[21] 吴育平, 孙卫, 杜堃, 等. 致密砂岩储层孔喉结构差异对可动流体赋存特征的影响:以苏里格气田东区和西区盒8储层为例[J]. 地质与勘探, 2019, 55(1):214-224. Wu Yuping, Sun Wei, Du Kun, et al. Influence of Pore-Throat Structure Differences on Occurrence Characteristics of Movable Fluid in Tight Sandstone Reservoirs:An Example of the He 8th Member of Permian Xiashihezi Formation in the East and West of the Sulige Gas Field[J]. Geology and Exploration, 2019, 55(1):214-224.
[22] 王伟, 牛小兵, 梁晓伟, 等. 鄂尔多斯盆地致密砂岩储层可动流体特征:以姬塬地区延长组长7段油层组为例[J]. 地质科技情报, 2017, 36(1):183-187. Wang Wei, Niu Xiaobing, Liang Xiaowei, et al. Characteristic of Movable Fluid for Tight Sandstone Reservoir in Ordos Basin:A Case of Chang 7 Oil Reservoir of Yanchang Formation in Jiyuan Area[J]. Geological Science and Technology Information, 2017, 36(1):183-187.
[23] 师调调, 孙卫, 何生平. 低渗透储层微观孔隙结构与可动流体饱和度关系研究[J]. 地质科技情报, 2012, 31(4):81-85. Shi Tiaotiao, Sun Wei, He Shengping. Relationship Between Micro-Pore Structure and Movable Fluid Saturation in Low Permeability Reservoir[J]. Geological Science and Technology Information, 2012, 31(4):81-85.
[24] 张颀悦, 孙卫, 尹红佳, 等. 低渗透储层核磁共振可动流体研究:以姬塬地区长6储层为例[J]. 石油化工应用, 2014, 33(8):42-47. Zhang Yinyue, Sun Wei, Yin Hongjia, et al. Study on NMR Fluids in Low Permeability Reservoirs:A Case Study of Chang 6 Reservoir in Jiyuan Area[J]. Petrochemical Industry Application, 2014, 33(8):42-47.
[25] 马淼, 孙卫, 刘登科, 等. 低渗透砂岩储层可动流体赋存特征及影响因素研究:以姬塬油田长6储层为例[J]. 石油地质与工程, 2016, 30(6):64-72. Ma Miao, Sun Wei, Liu Dengke, et al. Occurrence Characteristics and Influencing Factors of Movable Fluids in Low Permeability Sandstone Reservoirs:A Case Study of Chang 6 Reservoir in Jiyuan Oilfield[J]. Petroleum Geology and Engineering, 2016, 30(6):64-72.
[26] 任颖, 孙卫, 张茜, 等. 低渗透储层不同流动单元可动流体赋存特征及生产动态分析:以鄂尔多斯盆地姬塬地区长6段储层为例[J]. 地质与勘探, 2016, 52(5):974-984. Ren Ying, Sun Wei, Zhang Xi, et al. Characteristics of Movable Fluids and Study of Production Performance in Different Flow Units of Low-Permeability Reservoir:An Example from the Chang 6 Block of the Jiyuan Oilfield in Ordos Basin[J]. Geology and Exploration, 2016, 52(5):974-984.
[27] 盛军, 孙卫, 刘燕妮, 等. 低渗透油藏储层微观孔隙结构差异对可动流体的影响:以鄂尔多斯盆地姬塬与板桥地区长6储层为例[J]. 地质科技情报, 2016, 35(3):167-172. Sheng Jun, Sun Wei, Liu Yanni, et al. Effect of the Difference of Low Permeability Reservoir Microscopic Pore Structure on Movable Fluid:A Case for the Chang 6 Reservoir of Jiyuan and Banqiao Areas in Ordos Basin[J]. Geological Science and Technology Information, 2016, 35(3):167-172.
[28] 王为民, 叶朝辉, 郭和坤. 陆相储层岩石核磁共振物理特征的实验研究[J]. 波谱学杂志, 2001, 18(2):113-121. Wang Weimin, Ye Chaohui, Guo Hekun. Experimental Studies of NMR Properties of Continental Sedimentary Rocks[J]. Chinese Journal of Magnetic Resonance, 2001, 18(2):113-121.
[29] 孙军昌, 杨正明, 唐立根, 等. 致密气藏束缚水分布规律及含气饱和度研究[J]. 深圳大学学报(理工版), 2011, 28(5):377-383. Sun Junchang, Yang Zhengming, Tang Ligen, et al. Study on Distribution Law of Irreducible Water and Gas Saturation of Tight Sandstone Gas Reservoir[J]. Journal of Shenzhen University(Science and Engineering), 2011, 28(5):377-383.
[30] 黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及影响因素:以鄂尔多斯盆地姬塬油田延长组长8油层组为例[J]. 石油学报, 2019, 40(5):557-567. Huang Xing, Li Tiantai, Wang Xiangzeng, et al. Distribution Characteristics and Its Influence Factors of Movable Fluid in Tight Sandstone Reservoir:A Case Studyfrom Chang 8 Oil Layer of Yanchang Formation in Jiyuan Oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5):557-567.
[31] 王梦茜, 孙卫, 魏虎. 鄂尔多斯盆地板桥-合水地区长6储层可动流体赋存特征及影响因素[J]. 非常规油气, 2018, 5(3):68-73. Wang Mengxi, Sun Wei, Wei Hu. The Characteristic of Movable Fluid and Its Influencing Factors of Chang 6 Reservoir in Banqiao and Heshui Area, Ordos Basin[J]. Unconventonal Oil & Gas, 2018, 5(3):68-73.
[32] 郑可, 徐怀民, 陈建文, 等. 低渗储层可动流体核磁共振研究[J]. 现代地质, 2013, 27(3):710-718. Zheng Ke, Xu Huaimin, Chen Jianwen, et al. Movable Fluid Study of Low Permeability Reservoir with Nuclear Magnetic Resonance Technology[J]. Geoscience, 2013, 27(3):710-718.
[33] 时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5):827-834. Shi Jianchao, Qu Xuefeng, Lei Qihong, et al. Distribution Characteristics and Controlling Factors of Movable Fluid in Tight oil Reservoir:A Case Study of Chang 7 Reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5):827-834.
[34] 陈斌, 孙卫, 明红霞, 等. 特低渗透储层可动流体饱和度影响因素分析:以安塞油田长6储层为例[J]. 石油化工应用, 2014, 33(9):68-74. Chen Bin, Sun Wei, Ming Hongxia, et al. Movable Fluid Saturation Factor Analysis of Low Permeability Reservoir:Taking the Chang 6 Reservoir in the Ansai Oilfield as an Example[J]. Petrochemical Industry Application, 2014, 33(9):68-74.
[35] 郭睿良, 陈小东, 马晓峰, 等. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5):665-674. Guo Ruiliang, Chen Xiaodong, Ma Xiaofeng, et al. Analysis of the Characteristics and Its Influencing Factors of Horizontal Movable Fluid in the Chang 7 Tight Reservoir in Longdong Area, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(5):665-674.
[36] 李爱芬, 任晓霞, 王桂娟, 等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6):92-98. Li Aifen, Ren Xiaoxia, Wang Guijuan, et al. Characterization of Pore Structure of Low Permeability Reservoirs Using a Nuclear Magnetic Resonance Method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(6):92-98.
[37] 郑庆华, 柳益群. 特低渗透储层微观孔隙结构和可动流体饱和度特征[J]. 地质科技情报, 2015, 34(4):124-131. Zheng Qinghua, Liu Yiqun. Microscopic Pore Structure and Movable Fluid Saturation of Ultra-Low Permeability Reservoir[J]. Geological Science and Technology Information, 2015, 34(4):124-131.
[38] 白云云, 孙卫, 任大忠. 马岭油田致密砂岩储层可动流体赋存特征及控制因素[J]. 断块油气田, 2018, 25(4):51-54. Bai Yunyun, Sun Wei, Ren Dazhong. Characteristics and Controlling Factors of Movable Fluid in Low-Permeability and Tight Sandstone Reservoirs in Maling Oilfield[J]. Fault-Block Oil and Gas Field, 2018, 25(4):51-54.
[39] 李洋, 雷群, 刘先贵, 等. 微尺度下的非线性渗流特征[J]. 石油勘探与开发, 2011, 38(3):336-340. Li Yang, Lei Qun, Liu Xiangui, et al. Characteristics of Micro Scale Nonlinear Filtration[J]. Petroleum Exploration and Development, 2011, 38(3):336-340.
[40] 黎盼, 孙卫, 李长政, 等. 低渗透砂岩储层可动流体变化特征研究:以鄂尔多斯盆地马岭地区长8储层为例[J]. 地球物理学进展, 2018, 33(6):208-216. Li Pan, Sun Wei, Li Changzheng, et al. Characteristics of Movable Fluids in the Low Permeability Sandstone Reservoir:Taking the Chang 8 Reservoir of Maling Oilfield, Ordos Basin as an Example[J]. Progress in Geophysics, 2018, 33(6):208-216.
[41] 何顺利, 焦春燕, 王建国, 等. 恒速压汞与常规压汞的异同[J]. 断块油气田, 2011, 18(2):235-237. He Shunli, Jiao Chunyan, Wang Jianguo, et al. Discussion on the Differences Between Constant-Speed Mercury Injection and Conventional Mercury Injection Techniques[J]. Fault-Block Oil and Gas Field, 2011, 18(2):235-237.
[42] 王瑞飞, 陈明强. 特低渗透砂岩储层可动流体赋存特征及影响因素[J]. 石油学报, 2008, 29(4):558-561. Wang Ruifei, Chen Mingqiang. Characteristics and Influencing Factors of Movable Fluid in Ultra-Low Permeability Sandstone Reservoir[J]. Acta Petrolei Sinica, 2008, 29(4):558-561.
[43] 高辉, 孙卫. 特低渗透砂岩储层可动流体变化特征与差异性成因:以鄂尔多斯盆地延长组为例[J]. 地质学报, 2010, 84(8):1223-1230. Gao Hui, Sun Wei. Movable Fluid Variation Characteristics and Diversity Origin of Ultra-Low Permeability Sandstone Reservoir[J]. Acta Geologica Sinica, 2010, 84(8):1223-1230.
[44] 闫子旺, 张红玲, 周晓峰, 等. 超低渗透油藏核磁共振可动流体研究:以鄂尔多斯盆地西南部长8储层为例[J]. 陕西科技大学学报, 2015, 33(5):105-109. Yan Ziwang, Zhang Hongling, Zhou Xiaofeng, et al. Research on Movable Fluid in Ultra-Low Permeability Reservoirs with Nuclear Magnetic Resonance Technology:As an Example from Southwestern Chang 8 Reservoir in Ordos Basin[J]. Journal of Shaanxi University of Science & Technology, 2015, 33(5):105-109.
[45] 解伟, 张刚, 孙卫. 应用核磁共振技术对定边油田张韩区块长2储层可动流体进行研究[J]. 内蒙古石油化工, 2011, 37(12):18-19. Xie Wei, Zhang Gang, Sun Wei. Application of Nuclear Magnetic Resonance Technique to Study on Movable Fluid of Chang 2 Reservoir in Zhanghan Block of Dingbian Oilfield[J]. Inner Mongolia Petrochemical Industry, 2011,37(12):18-19.
[46] 高航, 孙卫, 庞振宇, 等. 低渗透致密气藏可动流体饱和度研究:以苏里格苏48区块盒8段储层为例[J]. 地球物理学进展, 2014, 29(1):324-330. Gao Hang, Sun Wei, Pang Zhenyu, et al. Movable Fluid Saturation of Low-Permeability and Tight Sandstone Gas Reservoir:Taking He 8 Section of Block Su 48 in Sulige Gasfiled as an Example[J]. Progress in Geophysics, 2014, 29(1):324-330.
[47] 明红霞, 孙卫, 张龙龙,等. 致密砂岩气藏孔隙结构对物性及可动流体赋存特征的影响:以苏里格气田东部和东南部盒8段储层为例[J]. 中南大学学报(自然科学版), 2015, 46(12):4556-4567. Ming Hongxia, Sun Wei, Zhang Longlong, et al. Impact of Pore Structure on Physical Property and Occurrence Characteristics of Moving Fluid of Tight Sandstone Reservoir:Taking He 8 Reservoir in the East and Southeast of Sulige Gasfield as an Example[J]. Journal of Central South University(Science and Technology), 2015, 46(12):4556-4567.
[48] 任大忠, 孙卫, 董凤娟, 等. 鄂尔多斯盆地华庆油田长81储层可动流体赋存特征及影响因素[J]. 地质与勘探, 2015, 51(4):797-803. Ren Dazhong, Sun Wei, Dong Fengjuan, et al. Characteristics of Movable Fluids in the Chang 81Reservoir, Yanchang Formation in Huaqing Oilfield, Ordos Basin and the Influencing Factors[J]. Geology and Exploration, 2015, 51(4):797-803.
[49] 刘登科, 孙卫, 任大忠, 等. 致密砂岩气藏孔喉结构与可动流体赋存规律:以鄂尔多斯盆地苏里格气田西区盒8段、山1段储层为例[J]. 天然气地球科学, 2016, 27(12):2136-2146. Liu Dengke, Sun Wei, Ren Dazhong, at al. Features of Pore-Throat Structures and Movable Fluid in Tight Gas Reservoir:A Case from the 8th Member of Permian Xiashihezi Formation and the 1st Member of Permian Shanxi Formation in the Western Area of Sulige Gasfield, Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(12):2136-2146.
[50] 王斌, 孙卫, 张茜, 等. 姬塬油田长6储层可动流体赋存特征及渗流能力分析[J]. 石油化工应用, 2016, 35(10):80-86. Wang Bin, Sun Wei, Zhang Xi, et al. Analysis of the Occurrence Characteristics and Seepage Capacity of the Movable Fluid in the Chang 6 Reservoir of the Jiyuan Oilfield[J]. Petrochemical Industry Application, 2016, 35(10):80-86.
[51] 任大忠, 孙卫, 赵继勇, 等. 鄂尔多斯盆地岩性油藏微观水驱油特征及影响因素:以华庆油田长81油藏为例[J]. 中国矿业大学学报, 2015, 44(6):1043-1052. Ren Dazhong, Sun Wei, Zhao Jiyong, et al. Microscopic Water Flooding Characteristics and Influencing Factors of Lithologic Reservoirs:A Case Study of Chang 81 Reservoir in Huaqing Oilfield, Ordos Basin[J]. Journal of China University of Mining & Technology, 2015, 44(6):1043-1052.
[52] 高洁, 任大忠, 刘登科, 等. 致密砂岩储层孔隙结构与可动流体赋存特征:以鄂尔多斯盆地华庆地区长63致密砂岩储层为例[J]. 地质科技情报, 2018, 37(4):190-195. Gao Jie, Ren Dazhong, Liu Dengke, et al. Impact of Pore Structures on Features of Movable Fluid in Tight Sandstone Reservoir:Taking Chang 63 Tight Sandstone Reservoir of Huaqing Area in Ordos Basin as an Example[J]. Geological Science and Technology Information, 2018, 37(4):190-195.
[53] 陈广志. 致密砂岩储层可动流体赋存特征及影响因素[J]. 科学技术与工程, 2015, 15(21):12-17. Chen Guangzhi. Characteristics and Influencing Factors of Movable Fluid in Tight Sandstone Reservoir[J]. Science Technology and Engineering, 2015, 15(21):12-17.
[54] 曹雷, 孙卫, 盛军, 等. 低渗透致密油藏可动流体饱和度计算方法:以板桥地区长6油层组致密油储层为例[J]. 长江大学学报(自然科学版), 2016, 13(20):1-8. Cao Lei, Sun Wei, Sheng Jun, et al. A Method to Determine Movable Fluid Saturation of Low-Permeability and Tight Oil Reservoirs:By Taking Tight Oil Reservoirs in Sixth Member of Yanchang Formation in Banqiao Area as an Example[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(20):1-8.
[55] 霍磊, 孙卫, 曹雷, 等. 特低渗透储层微观孔隙结构及可动流体赋存特征研究:以鄂尔多斯盆地合水-华池地区长6储层为例[J]. 石油地质与工程, 2016, 30(1):121-125. Huo Lei, Sun Wei, Cao Lei, et al. Study on Microscopic Pore Structure and Movable Fluid Occurrence Characteristics of Ultra-Low Permeability Reservoirs:A Case Study of Chang 6 Reservoir in Heshui-Huachi Area, Ordos Basin[J]. Petroleum Geology & Engineering, 2016, 30(1):121-125.
[56] 黎盼, 孙卫, 高永利, 等. 鄂尔多斯盆地马岭油田长81储层不同成岩相类型可动流体赋存特征分析[J]. 地质与勘探, 2019, 55(2):205-216. Li Pan, Sun Wei, Gao Yongli, et al. Occurrence Characteristics of Movable Fluids in Different Diagenetic Facies of the Chang 81 Reservoir, Maling Oilfield, Ordos Basin[J]. Geology and Exploration, 2019, 55(2):205-216.
[57] 杨涛, 谢俊, 周巨标, 等. 低孔-特低渗砂岩储层可动流体核磁共振特征及成因:以王龙庄油田T89断块阜宁组二亚段为例[J]. 山东科技大学学报(自然科学版), 2018, 37(1):119-126. Yang Tao, Xie Jun, Zhou Jubiao, et al. NMR Features and Contributing Factors of Movable Fluid in Low Porosity and Ultra-Low Permeability Sandstone Reservoir:Taking the 2nd Member of Funing Formation in T89 Block of Wanglongzhuang Oilfield as an Example[J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(1):119-126.
[58] 李长政, 孙卫, 任大忠, 等. 华庆地区长81储层微观孔隙结构特征研究[J]. 岩性油气藏, 2012, 24(4):19-23. Li Changzheng, Sun Wei, Ren Dazhong, et al. Microscopic Pore Structure Characteristics of Chang 81 Reservoir in Huaqing Area[J]. Lithologic Reservoirs, 2012, 24(4):19-23.
[59] 杨正明, 骆雨田, 何英, 等. 致密砂岩油藏流体赋存特征及有效动用研究[J]. 西南石油大学学报(自然科学版), 2015, 37(3):85-92. Yang Zhengming, Luo Yutian, He Ying, et al. Study on Occurrence Feature of Fluid and Effective Development in Tight Sandstone Oil Reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(3):85-92.
[60] 周尚文, 刘洪林, 闫刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4):612-616. Zhou Shangwen, Liu Honglin, Yan Gang, et al, NMR Research of Movable Fluid and T2 Cutoff of Marine Shale in South China[J]. Oil & Gas Geology, 2016, 37(4):612-616.
[61] 李太伟, 郭和坤, 李海波, 等. 应用核磁共振技术研究页岩气储层可动流体[J]. 特种油气藏, 2012, 19(1):107-109. Li Taiwei, Guo Hekun, Li Haibo, et al. Research on Movable Fluids in Shale Gas Reservoirs with NMR Technology[J]. Special Oil and Gas Reservoirs, 2012, 19(1):107-109.
[62] 桑茜, 张少杰, 朱超凡, 等. 陆相页岩油储层可动流体的核磁共振研究[J]. 中国科技论文, 2017, 12(9):15-20. Sang Qian, Zhang Shaojie, Zhu Chaofan, et al. Study on Movable Fluid of Continental Shale Oil Reservoir with NMR Technology[J]. China Science Paper, 2017, 12(9):15-20.
[63] 范俊佳, 周海民, 柳少波. 塔里木盆地库车坳陷致密砂岩储层孔隙结构与天然气运移特征[J]. 中国科学院大学学报, 2014, 31(1):112-120. Fan Junjia, Zhou Haimin, Liu Shaobo. Pore Structure and Gas Migration Characterization of Tight Sandstone in Kuqa Depression of Tarim Basin[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(1):112-120.
[64] 郑司建, 姚艳斌, 蔡益栋, 等. 准噶尔盆地南缘低煤阶煤储层可动流体及孔径分布特征[J]. 煤田地质与勘探, 2018, 46(1):56-65. Zheng Sijian, Yao Yanbin, Cai Yidong, et al. Characteristics of Movable Fluid and Pore Size Distribution of Low Rank Coals Reservoir in Southern Margin of Junggar Basin[J]. Coal Geology & Exploration, 2018, 46(1):56-65.
[65] 高辉. 红河油田长8致密砂岩储层微观孔隙结构及可动流体饱和度特征研究[J]. 石油地质与工程, 2018, 32(5):44-47. Gao Hui. Microscopic Pore Structure and Movable Fluid Saturation Characteristics of Chang 8 Tight Sandstone Reservoir of Honghe Oilfied[J]. Petroleum Geology and Engineering, 2018, 32(5):44-47.
[66] 高辉, 孙卫. 鄂尔多斯盆地合水地区长8储层成岩作用与有利成岩相带[J]. 吉林大学学报(地球科学版), 2010, 40(3):542-548. Gao Hui, Sun Wei. Diagenesis and Favorable Diagenetic Facies of Chang 8 Reservoir in Heshui Area, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3):542-548.
[67] 白斌, 朱如凯, 吴松涛,等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3):329-333. Bai Bin, Zhu Rukai, Wu Songtao, et al. Multi-Scale Method of Nano (Micro)-CT Study on Microscopic Pore Structure of Tight Sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3):329-333.
[68] 高辉, 解伟, 杨建鹏, 等. 基于恒速压汞技术的特低-超低渗砂岩储层微观孔喉特征[J]. 石油实验地质, 2011, 33(2):206-221. Gao Hui, Xie Wei, Yang Jianpeng, et al. Pore Throat Characteristics of Extra-Ultra Low Permeability Sandstone Reservoir Based on Constant-Rate Mercury Penetration Technique[J]. Petroleum Geology & Experiment, 2011, 33(2):206-214.
[69] Gharbi O, Blunt M J. The Impact of Wettability and Connectivity on Relative Permeability in Carbonates:A Pore Network Modeling Analysis[J]. Water Resources Research, 2012, 48(12):W12513.
[70] 卜淘, 曹廷宽. ZJ气田沙溪庙组储层微观孔隙结构及渗流特征研究[J]. 矿物岩石, 2018, 38(3):106-114. Bu Tao, Cao Tingkuan. Study of Pore Structure and Seepage Characteristics of Shaximiao Formation Reservoir in ZJ Gas Field[J]. Journal of Mineralogy and Petrology, 2018, 38(3):106-114.
[71] 陈猛. 致密油储层水驱油实验及动态网络模拟研究[D]. 成都:西南石油大学, 2017. Chen Meng. Water Flooding Experiment and Dynamic Network Simulation of Tight Oil Reservoir[D]. Chengdu:Southwest Petroleum University, 2017.
[72] 刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10):1644-1652. Liu Xiangjun, Xiong Jian, Liang Lixi, et al. Analysis of the Wettablility of Longmaxi Formation Shale in the South Region of Sichuan Basin and Its Influence[J]. Natural Gas Geoscience, 2014, 25(10):1644-1652.
[73] 吴蒙. 临兴-神府地区煤系致密砂岩润湿性[D]. 徐州:中国矿业大学, 2019. Wu Meng. Wettability of Tight Sandstones in Coal Measures from Linxing-Shenfu Area, Shanxi, China[D]. Xuzhou:China University of Mining and Technology, 2019.
[74] 李海涛, 马启睿, 李东昊. 低矿化度注水提高砂岩储集层采收率的微观机理[J]. 石油钻采工艺, 2017, 39(2):151-157. Li Haitao, Ma Qirui, Li Donghao. Microscopic Mechanisms of Low Salinity Water Injection Technology for Sandstone Reservoir EOR[J]. Oil Drilling & Production Technology, 2017, 39(2):151-157.
[75] 李云, 祁利褀, 胡作维, 等. 准噶尔盆地阜东斜坡中侏罗统头屯河组储层敏感性特征[J]. 岩性油气藏, 2014, 26(1):52-57. Li Yun, Qi Liqi, Hu Zuowei, et al. Reservoir Sensitivity of Middle Jurassic Toutunhe Formation in Fudong Slope, Junggar Basin[J]. Lithologic Reservoirs, 2014, 26(1):52-57.
[76] 师俊峰, 师永民, 高超利, 等. 致密砂岩储层黏土矿物特征及敏感性分析:以鄂尔多斯盆地吴起油田寨子河地区长6油层为例[J]. 科学技术与工程, 2018, 18(20):93-100. Shi Junfeng, Shi Yongmin, Gao Chaoli, et al. Tight Sandstone Reservoir Clay Minerals Characteristics and Sensitivity Analysis:A Case Study of Chang 6 Formation in Zhaizihe Area, Wuqi Oilfield, Ordos Basin[J]. Science Technology and Engineering, 2018, 18(20):93-100.
[77] 康逊, 胡文瑄, 王剑, 等. 扇三角洲砂砾岩油藏储层敏感性研究:以准噶尔盆地玛湖凹陷百口泉组为例[J]. 中国矿业大学学报, 2017, 46(3):596-605. Kang Xun, Hu Wenxuan, Wang Jian, et al. Fan-Delta Sandy Conglomerate Reservoir Sensitivity:A Case Study of the Baikouquan Formation in the Mahu Sag, Junggar Basin[J]. Journal of China University of Mining & Technology, 2017, 46(3):596-605.
[78] 马世忠, 王海鹏, 孙雨, 等. 松辽盆地扶新隆起带北部扶余油层超低渗储层黏土矿物特征及其对敏感性的影响[J]. 地质论评, 2014, 60(5):1085-1092. Ma Shizhong, Wang Haipeng, Sun Yu, et al. Clay Minerals Characteristics and Its Effects on Sensitivity of Fuyu Ultra-Low Permeability Reservoirs in the Northern Fuxin Uplift, Songliao Basin[J]. Geological Review, 2014, 60(5):1085-1092.
[79] 刘大伟, 康毅力, 何健, 等. 碳酸盐岩储层水敏性实验评价及机理探讨[J]. 天然气工业, 2007,27(2):32-34. Liu Dawei, Kang Yili, He Jian, et al. Laboratory Investigation of Water Sensitivity of Carbonate Reservoirs and Discussion of Its Mechanism[J]. Natural Gas Industry, 2007, 27(2):32-34.
[80] 王玉霞, 周立发, 焦尊生, 等. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4):981-990. Wang Yuxia, Zhou Lifa, Jiao Zunsheng, et al. Sensitivity Evaluation of Tight Sandstone Reservoir in Yangchang Formation in Shanbei Area, Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4):981-990.
[81] 党犇, 赵虹, 康晓燕, 等. 鄂尔多斯盆地陕北斜坡中部延长组深部层系特低渗储层敏感性微观机理[J]. 中南大学学报(自然科学版), 2013, 44(3):1100-1107. Dang Ben, Zhao Hong, Kang Xiaoyan, et al.Sensitivity Microscopic Mechanism Study of Super-Low Permeability Reservoirs in Depth of Yanchang Formation in Centration of Northern Shaanxi Slop Ordos Basin NW China[J]. Journal of Central South University (Science and Technology), 2013, 44(3):1100-1107.
[82] 景海权, 张烈辉, 赵连水, 等. 大港油田张东地区低渗储层黏土矿物分析及敏感性研究[J]. 特种油气藏, 2012, 19(2):110-112. Jing Haiquan, Zhang Liehui, Zhao Lianshui, et al. Analysis and Sensitivity Study of Clay Minerals in Low Permeability Reservoirs in Zhangdong Area of Dagang Oilfield[J]. Special Oil & Gas Reservoirs, 2012, 19(2):110-112.
[83] 邱隆伟, 于杰杰, 郝建民, 等. 南堡凹陷高南地区东三段低渗储层敏感性特征的微观机制研究[J]. 岩石矿物学杂志, 2009, 28(1):78-86. Qiu Longwei, Yu Jiejie, Hao Jianmin, et al. A Microscopic Study of the Formation Mechanism of Low Permeability Reservoir Sensibility of Ed3 in Gaonan Area[J]. Acta Petrologica et Mineralogica, 2009, 28(1):78-86.
[84] 于忠良, 熊伟, 高树生, 等. 致密储层应力敏感性及其对油田开发的影响[J]. 石油学报, 2007, 28(4):95-98. Yu Zhongliang, Xiong Wei, Gao Shusheng, et al. Stress Sensitivity of Tight Reservoir and Its Influence on Oilfield Development[J]. Acta Petrolei Sinica, 2007, 28(4):95-98.
[85] 雷刚, 董平川, 杨书, 等. 基于岩石颗粒排列方式的低渗透储层应力敏感性分析[J]. 岩土力学, 2014, 35(增刊1):1085-1092. Li Gang, Dong Pingchuan, Yang Shu, et al. Study of Stress-Sensitivity of Low-Permeability Reservoir Based on Arrangement of Particles[J]. Rock and Soil Mechanics, 2014, 35(Sup.1):1085-1092.
[86] 贾爱林, 程立华. 数字化精细油藏描述程序方法[J]. 石油勘探与开发, 2010, 37(6):709-715. Jia Ailin, Cheng Lihua. The Technique of Digital Detailed Reservoir Characterization[J]. Petroleum Exploration and Development, 2010, 37(6):709-715.
[1] 张大智, 初丽兰, 周翔, 王晓莲, 李鑫. 松辽盆地北部徐家围子断陷沙河子组致密气储层成岩作用与成岩相特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 22-34.
[2] 吴蒙, 朱超, 秦云虎, 秦勇, 申建, 赵恒, 朱士飞. 临兴地区山西组致密砂岩气开采潜力地质评价方法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 991-1002.
[3] 崔景伟, 朱如凯. 致密砂岩层内强钙质胶结物成因机制及其意义——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 吉林大学学报(地球科学版), 2020, 50(4): 957-967.
[4] 王付勇, 程辉. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征[J]. 吉林大学学报(地球科学版), 2020, 50(3): 721-731.
[5] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[6] 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539.
[7] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[8] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[9] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[10] 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667.
[11] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[12] 陈冬霞, 庞雄奇, 杨克明, 祝渭平, 严青霞. 川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1611-1623.
[13] 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937.
[14] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
[15] 李易霖, 张云峰, 丛琳, 谢舟, 闫明, 田肖雄. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!