吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 957-967.doi: 10.13278/j.cnki.jjuese.20180260
• 地质与资源 • 上一篇
崔景伟, 朱如凯
Cui Jingwei, Zhu Rukai
摘要: 通过岩心和薄片观察,利用荧光显微镜、阴极发光显微镜、同位素质谱仪、冷热台等设备,对鄂尔多斯盆地长7油层组强钙质胶结砂岩及其附近含油砂岩开展研究。结果表明:钙质胶结是致密砂岩储层含油非均质性的主要因素,胶结期次主要为一期;簇同位素揭示该期钙质胶结物的形成温度为18~42℃,对应地质时代为中晚三叠世—中侏罗世,为早成岩期产物,推测与盆地早期小规模构造运动相关;相邻的含油砂岩中油气包裹体伴生的同期盐水包裹体的均一化温度为90~120℃,结合盆地模拟揭示油气主要为一期充注,充注期为100~130 Ma,处于早白垩世;长7油层组不含油致密砂岩内钙质胶结物形成时间早于含油砂岩内石油的充注时间。
中图分类号:
[1] EIA. Annual Energy Outlook 2013 with Projections to 2040[R]. Washington, D C:U S Energy Information Administration, 2013. [2] Kuang L, Yong T, Dewen L, et al.Formation Conditions and Exploration Potential of Tight Oil in the Permian Saline Lacustrine Dolomitic Rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6):700-711. [3] 杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11. Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and Resource Prospects of Tight Oil and Shale Oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1):1-11. [4] 梁狄刚,冉隆辉,戴弹申,等.四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J].石油学报,2011,32(1):8-17. Liang Digang, Ran Longhui, Dai Danshen, et al. A Re-Recognition of the Prospecting Potential of Jurassic Large-Area and Non-Conventional Oils in the Central-Northern Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(1):8-17. [5] 付锁堂,张道伟,薛建勤,等.柴达木盆地致密油形成的地质条件及勘探潜力分析[J].沉积学报,2013,31(4):672-682. Fu Suotang, Zhang Daowei, Xue Jianqin, et al.Exploration Potential and Geological Conditions of Tight Oil in the Qaidam Basin[J]. Acta Sedimentologica Sinica, 2013, 31(4):672-682. [6] 黄薇,梁江平,赵波,等.松辽盆地北部白垩系泉头组扶余油层致密油成藏主控因素[J].古地理学报,2013,15(5):635-644. Huang Wei, Liang Jiangping, Zhao Bo, et al.Main Controlling Factors of Tight Oil Accumulations in the Fuyu Layer of Cretaceous Quantou Formation in Northern Songliao Basin[J]. Journal of Palaeogeography, 2013, 15(5):635-644. [7] 崔景伟,朱如凯,吴松涛,等.致密砂岩层内非均质性及含油下限:以鄂尔多斯盆地三叠系延长组长7段为例[J].石油学报,2013,34(5):877-882. Cui Jingwei, Zhu Rukai, Wu Songtao, et al. Heterogeneity and Lower Oily Limits for Tight Sandstones:A Case Study on Chang-7 Oil Layers of the Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(5):877-882. [8] Yang Z, Hou L H, Tao S Z, et al. Formation Conditions and Sweet Spot Evaluation of Tight Oil and Shale Oil[J]. Petroleum Exploration and Development, 2015, 42(5):555-565. [9] 邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864. Zou Caineng, Zhu Rukai, Bai Bin, et al.First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value[J]. Acta Petrologica Sinica, 2011, 27(6):1857-1864. [10] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型,特征,机理及展望:以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187. [11] 杨华,张文正.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005,34(2):147-154. Yang Hua, Zhang Wenzheng. Leading Effect of the Seventh Member High-Quality Source Rock of Yanchang Formation in Ordos Basin During the Enrichment of Low-Penetrating Oil-Gas Accumulation:Geology and Geochemistry[J]. Geochimica, 2005, 34(2):147-154. [12] 崔景伟,朱如凯,李士祥,等.致密砂岩油可动量及其主控因素:以鄂尔多斯盆地三叠系延长组长7段为例[J].石油实验地质, 2016,38(4):536-542. Cui Jingwei, Zhu Rukai, Li Shixiang, et al. Movable Oil and Its Controlling Factors in Tight Sandstones:A Case Study of Triassic Chang 7 Reservoir, Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2016, 38(4):536-542. [13] 裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1997. Qiu Yinan, Xue Shuhao. Oil and Gas Reservoir Evaluation Technology[M]. Beijing:Petroleum Industry Press, 1997:200-300. [14] Eiler J M. Clumped-Isotope Geochemistry:The Study of Naturally-Occurring, Multiply-Substituted Isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4):309-327. [15] Wang Xu, Cui Linlin, Li Yangyang, et al. Determination of Clumped Isotopes in Carbonate Using Isotope Ratio Mass Spectrometry:Toward a Systematic Evaluation of a Sample Extraction Method Using a Static PorapakTM Q Absorbent Trap[J]. International Journal of Mass Spectrometry, 2016, 403:8-14. [16] Dennis K J, Affek H P, Passey B H, et al. Defining the Absolute Reference Frame for ‘Clumped’ Isotope Studies of CO2[J]. Geochimica et Cosmochimica Acta, 2011, 75:7117-7131. [17] Ghosh P, Adkins J, Affek H, et al. 13C-18O Bonds in Carbonate Minerals:A New Kind of Paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70:1439-1456. [18] Zaarur S, Affer H P, Brandon M T. A Revised Calibration of the Clumped Isotope Thermometer[J]. Earth Planet Science Letter, 2013, 382:47-57. [19] Wacker U, Fiebig J, TÖdter J, et al. Empirical Calibration of the Clumped Isotope Paleothermometer Using Calcites of Various Origins[J]. Geochimica et Cosmochimica Acta, 2014, 141:127-144. [20] Tang J, Dietzel M, Fernandez A,et al. Evaluation of Kinetic Effects on Clumped Isotope Fractionation (D47) During Inorganic Calcite Precipitation[J]. Geochimica et Cosmochimica Acta, 2014, 134:120-136. [21] Kluge T, John C M, Jourdan A L, et al. Laboratory Calibration of the Calcium Carbonate Clumped Isotope Thermometer in the 25-250℃ Temperature Range[J]. Geochimica et Cosmochimica Acta, 2015, 157:213-227. [22] Schauble E A, Ghosh P, Eiler J M. Preferential Formation of 13C-18O Bonds in Carbonate Minerals, Estimated Using First-Principles Lattice Dynamics[J]. Geochimica et Cosmochimica Acta, 2006, 70:2510-2529. [23] Henkes G A, Passey B H, Wanamaker A D, et al. Carbonate Clumped Isotope Compositions of Modern Marine Mollusk and Brachiopod Shells[J]. Geochimica et Cosmochimica Acta, 2013, 106:307-325. [24] Eagel R A, Enriquez M, Grillet T G, et al. Isotopic Ordering in Eggshells Reflects Body Temperatures and Suggests Two Differing Themophysiology in Two Cretaceous Dinosaurs[J]. Nature Communication, 2015, 6:1-11. [25] Hill P S,Tripati A K, Schauble E. Theoretical Constraints on the Effects of pH, Salinity, and Temperature on Clumped Isotope Signatures of Dissolved Inorganic Carbon Species and Precipitating Carbonate Minerals[J]. Geochimica et Cosmochimica Acta, 2014, 125:610-652. [26] Pirrie D, Marshall J D. Field Relationships and Stable Isotope Geochemistry of Concretions from James Ross Island, Antarctica[J]. Sedimentary Geology, 1991, 71(3/4):137-150. [27] Cui Jingwei, Zhu Rukai,Luo Zhong, et al. Sedimentary and Geochemical Characteristics of the Triassic Chang 7 Member Shale in the Southeastern Ordos Basin, Central China[J]. Petroleum Science, 2019, 16(2):285-297. [28] Cui Jingwei, Wang Tieguan, Li Meijun, et al. Oil Filling History of the Bashituo Oilfield in the Markit Slop, SW Tarim Basin, China[J]. Petroleum Science, 2013, 10:58-64. [29] Blamey N J F, Ryder A G. Hydrocarbon Fluid Inclusion Fluorescence:A Review[J]. Reviews in Fluorescence, 2007:299-334. [30] Przyjalgowski M A, Ryder A G, Feely M, et al. Analysis of Hydrocarbon Bearing Fliud Inclusions (HCFI) Using Time-Resolves Fluorescence Spectroscopy[J]. SPIE, 2015, 58(26):173-184. [31] Hanor J S. Dissolved Methane in Sedimentary Brines:Potential Effect on PVT Properties of Fliud Inclusions[J]. Economic Geology, 1980, 75(4):603-617. [32] 时保宏,张艳,张雷,等.鄂尔多斯盆地延长组长7致密储层流体包裹体特征与成藏期次[J].石油实验地质,2012,34(6):599-603. Shi Baohong, Zhang Yan, Zhang Lei, et al. Hydrocarbon Accumulation Dating by Fluid Inclusion Characteristics in Chang 7 Tight Sandstone Reservoirs of Yanchang Formation in Ordos Basin[J]. Petroleum Geology & Experiment, 2012, 34(6):599-603. [33] 郭正权,张立荣,楚美娟,等.鄂尔多斯盆地南部前侏罗纪古地貌对延安组下部油藏的控制作用[J].古地理学报,2008,10(1):63-71. Guo Zhengquan, Zhang Lirong, Chu Meijuan, et al. Pre-Jurassic Palaeogeomorphic Control on the Hydrocarbon Accumulation in the Lower Yan' an Formation in Southern Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(1):63-71. |
[1] | 于洋, 王祝文, 宁琴琴, 徐方慧. 松辽盆地大庆长垣四方台组可地浸砂岩铀成矿测井评价[J]. 吉林大学学报(地球科学版), 2020, 50(3): 929-940. |
[2] | 王付勇, 程辉. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征[J]. 吉林大学学报(地球科学版), 2020, 50(3): 721-731. |
[3] | 张雷, 樊洪波, 侯伟, 张伟, 郝帅, 孙晓光. 煤层气井产出剖面测试技术及应用[J]. 吉林大学学报(地球科学版), 2020, 50(2): 617-626. |
[4] | 李向东, 何幼斌. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 139-157. |
[5] | 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551. |
[6] | 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539. |
[7] | 王朝, 王冠民, 杨清宇, 胡津, 何为, 石晓明, 张婕. 吴起—志丹地区延长组下组合浊沸石的纵向分布特征与成因[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1247-1260. |
[8] | 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969. |
[9] | 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538. |
[10] | 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352. |
[11] | 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029. |
[12] | 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990. |
[13] | 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692. |
[14] | 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667. |
[15] | 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630. |
|