吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 483-494.doi: 10.13278/j.cnki.jjuese.20200063
• 地质工程与环境工程 • 上一篇
徐新木1, 张耀平1, 付玉华1, 雷大星2, 邹雄刚1
Xu Xinmu1, Zhang Yaoping1, Fu Yuhua1, Lei Daxing2, Zou Xionggang1
摘要: 为探究冻融循环对节理岩石抗剪力学特性的影响,针对冻融循环前后不同连通率节理岩石试样进行剪切特性试验,探究了节理试样的剪切破坏机制,对比分析了冻融前后节理试样抗剪强度的衰减趋势,分析了黏聚力及内摩擦角随岩石试样剪切破坏面分形维数的变化规律。结果表明:随冻融循环次数的增加,节理试样剪切应力-位移曲线发生显著变化,峰值剪应力出现明显下降,黏聚力及内摩擦角对比冻融前试样出现明显劣化,并且随节理试样连通率的增加,劣化程度加剧;在节理连通率相同时,随冻融循环次数的增加,剪切破坏面的分形维数呈现近指数函数递增的趋势,随分形维数的增加,节理试样的黏聚力损伤因子、内摩擦损伤因子也呈现指数函数增加的趋势;在冻融循环次数相同时,内摩擦角损伤因子随节理连通率的增大呈先减小后增大的趋势,而黏聚力损伤因子在冻融循环次数为30次前后分别呈递增和先减后增的趋势。
中图分类号:
[1] Shen Yanjun,Yang Gengshe,Tang Liyun, et al. Development Trend and Statistics of the Field of Geotechnical Mechanics and Engineering in Cold Regions Funded by NSFC During 2006-2015[J]. Journal of Glaciology & Geocryology,2015,37(5):1294-1303. [2] 安玉科,佴磊.冻融循环作用下节理岩体锚固性能退化机理和模式[J].吉林大学学报(地球科学版),2012,42(2):462-467. An Yuke,Nai Lei. Mechanism and Style of Anchorage Degradation in Jointed Rock Mass Under Cycle of Freezing and Thawing[J]. Journal of Jilin University (Earth Science Edition), 2012,42(2):462-467. [3] 战高峰,朱福,董伟智,等.季冻区低路堤土基强度与影响因素相关性[J].吉林大学学报(地球科学版),2015,45(3):869-875. Zhan Gaofeng, Zhu Fu, Dong Weizhi,et al. Influencing Factors of Low Embankment Soil Subgrade Strength in Seasonally Frozen Region[J]. Journal of Jilin University (Earth Science Edition), 2015,45(3):869-875. [4] 张泽,周泓,秦琦,等.冻融循环作用下黄土的孔隙特征试验[J].吉林大学学报(地球科学版),2017,47(3):839-847. Zhang Ze, Zhou Hong, Qin Qi,et al. Experimental Study on Porosity Characteristics of Loess Under Freezing-Thawing Cycle[J]. Journal of Jilin University (Earth Science Edition), 2017,47(3):839-847. [5] Khanlari G, Sahamieh R Z, Abdilor Y. The Effect of Freeze-Thaw Cycles on Physical and Mechanical Properties of Upper Red Formation Sandstones, Central Part of Iran[J]. Arabian Journal of Geosciences, 2015, 8(8):5991-6001. [6] Walbert C, Eslami J, Beaucour A L, et al. Evolution of the Mechanical Behaviour of Limestone Subjected to Freeze-Thaw Cycles[J]. Environmental Earth Sciences,2015,74(7):6339-6351. [7] Ishikawa T, Lin T S, Kawabata S, et al. Effect Evaluation of Freeze-Thaw on Resilient Modulus of Unsaturated Granular Base Course Material in Pavement[J]. Transportation Geotechnics,2019,21(1):833-836. [8] Kawabata S, Ishikawa T, Kameyama S. Effects of Freeze-Thaw History on Bearing Capacity of Granular Base Course Materials[J]. Procedia Engineering,2016,134(6):828-835. [9] Ghobadi M H, Babazadeh R. Experimental Studies on the Effects of Cyclic Freezing-Thawing, Salt Crystallization, and Thermal Shock on the Physical and Mechanical Characteristics of Selected Sandstones[J]. Rock Mechanics & Rock Engineering,2015,48(3):1001-1016. [10] Martínez-Martínez J, Benavente D, Gomez-Heras M, et al. Non-Linear Decay of Building Stones During Freeze-Thaw Weathering Processes[J]. Construction & Building Materials,2013,38(1):443-454. [11] Jin Yu,Xu Chen,Hong Li, et al. Effect of Freeze-Thaw Cycles on Mechanical Properties and Permeability of Red Sandstone Under Triaxial Compression[J]. Journal of Mountain Science,2015,12(1):218-231. [12] Zhang Huimei, Yang Gengshe. Research on Damage Model of Rock Under Coupling Action of Freeze-Thaw and Load[J]. Chinese Journal of Rock Mechanics and Engineering,2010(3):471-476. [13] Li Xinping, Lu Yani,Wang Yangjun. Research on Damage Model of Single Jointed Rock Masses Under Coupling Action of Freeze-Thaw and Loading[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(11):2307-2315. [14] Liu Quansheng, Huang Shibing, Kang Yongshui, et al. Fatigue Damage Model and Evaluation Index for Rock Mass Under Freezing-Thawing Cycles[J].Chinese Journal of Rock Mechanics & Engineering,2015,34(6):1116-1127. [15] Lu Yani, Li Xinping, Chan A. Damage Constitutive Model of Single Flaw Sandstone Under Freeze-Thaw and Load[J].Cold Regions Science and Technology,2019,15(9):20-28. [16] Fang Wen, Jiang Nan, Luo Xuedong. Establishment of Damage Statistical Constitutive Model of Loaded Rock and Method for Determining Its Parameters Under Freeze-Thaw Condition[J]. Cold Regions Science and Technology,2019,160:31-38. [17] 王乐华,柏俊磊,孙旭曙,等.不同连通率节理岩体三轴加卸荷力学特性试验研究[J]. 岩石力学与工程学报,2015,34(12):2500-2508. Wang Lehua, Bai Junlei, Sun Xushu,et al. Experimental Study on Mechanical Properties of Jointed Rock Masses with Different Connectivity Rates Under Triaxial Loading and Unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(12):2500-2508. [18] Chen Xin, Liao Zhihong, Peng Xi. Deformability Characteristics of Jointed Rock Masses Under Uniaxial Compression[J]. International Journal of Mining Science and Technology,2012,22(2):213-221. [19] 卢波,陈剑平,石丙飞,等. 用遗传算法求解节理岩体三维连通率[J]. 岩石力学与工程学报,2004,23(20):3470-3474. Lu Bo,Chen Jianping,Shi Bingfei, et al. Using Genetic Algorithm to Solve 3D Connectivity of Jointed Rock Masses[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(20):3470-3474. [20] 胡波,王思敬,刘晓丽.共面断续节理岩体直剪强度特性模型[J]. 江苏大学学报(自然科学版),2012,33(5):601-605. Hu Bo,Wang Sijing,Liu Xiaoli. Direct Shear Strength Characteristics Model of Coplanar Discontinuous Jointed Rock Mass[J]. Journal of Jiangsu University (Natural Science Edition), 2012,33(5):601-605. [21] Kravchenko E, Liu Jiankun, Krainiukov A, et al. Dynamic Behavior of Clay Modified with Polypropylene Fiber Under Freeze-Thaw Cycles[J]. Transportation Geotechnics,2019,10(2):82-90. [22] Yang Renshu,Chen Jun,Fang Shizheng,et al. Inversion Analysis of M-C Criterion Parameters of Rock Based on Uniaxial Shearing Failure[J]. Chinese Journal of Geotechnical Engineering,2017,39(7):1351-1356. [23] Niu Zhiren,Shi Xingjue. Statistical Theory of Rock Fractal Fracture[J]. Chinese Journal of Geophysics,1992,35(5):594-603. [24] Fathi A, Moradian Z, Rivard P, et al. Shear Mechanism of Rock Joints Under Pre-Peak Cyclic Loading Condition[J]. International Journal of Rock Mechanics and Mining Sciences,2016,83(9):197-210. [25] Zhang Yuyang, Lo S, Cao Chandi. Reassessing the Joint Roughness Coefficient (JRC) Estimation Using Z2[J]. Rock Mechanics & Rock Engineering,2001,34(3):243-251. [26] Grasselli S. Shear Strength of Rock Joints Based on Quantified Surface Description[J]. Rock Mechanics & Rock Engineering,2006,39(4):295. [27] Barton N. Shear Strength Criteria for Rock, Rock Joints,Rockfill and Rock Masses:Problems and Some Solutions[J]. Journal of Rock Mechanics & Geotechnical Engineering,2013,5(4):249-261. [28] 曹平,何云,范祥.剪切前后节理表面形貌纹理特征变化[J].中南大学学报(自然科学版),2013,44(11):4624-4630. Cao Ping,He Yun,Fan Xiang,et al. Changes in Joint Surface Topography and Texture Characteristics Before and After Shearing[J]. Journal of Central South University (Natural Science Edition), 2013,44(11):4624-4630. [29] El-Soudani S M. Profilometric Analysis of Fractures[J]. Metallography, 1978, 11(3):247-336. [30] Theiler J. Estimating Fractal Dimension[J]. Journal of the Optical Society of America A,1990, 7(6):1055-1073. |
[1] | 廖东良, 曾义金. 利用测井资料建立地层剪破裂模型[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1268-1276. |
[2] | 张泽, 周泓, 秦琦, 邴慧, 武俊杰, 周攀峰. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847. |
[3] | 宿晓萍,王清,王文华,孙昊月. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1244-1253. |
[4] | 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1904-1914. |
[5] | 鲁雅梅,王瑶,周丹丹,赵文元,王冰,杨翠华. 流态化多级速度梯度混凝反应对絮体的保护作用[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1608-1613. |
[6] | 周丹丹,赵文元,王君,谭传雄,董双石,崔宁. 流化床混凝装置中多级速度梯度的建立及其对混凝反应的影响[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1896-1902. |
[7] | 安玉科, 佴磊. 冻融循环作用下节理岩体锚固性能退化机理和模式[J]. J4, 2012, 42(2): 462-467. |
[8] | 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响--来自构造节理分析的证据[J]. J4, 2011, 41(3): 724-734. |
[9] | 肖云华, 陈剑平, 张鹏, 张丽. 隧道超欠挖断面轮廓分形特征[J]. J4, 2010, 40(1): 153-158. |
[10] | 肖云华,王 清,陈剑平,邱道宏. 隧道围岩超欠挖与节理和洞轴线之间的关系[J]. J4, 2008, 38(3): 455-0459. |
[11] | 李金龙,王璞珺,郑常青,唐华风,吴颜雄,边伟华. 松辽盆地东南隆起区营城组柱状节理流纹岩特征和成因[J]. J4, 2007, 37(6): 1131-1138. |
[12] | 孙庆春, 孙晓猛, 王璞珺, 刘万洙, 金凤兰, 白雪峰. 松辽盆地东缘营城组节理构造特征、分布规律及其储层预测[J]. J4, 2007, 37(6): 1091-1096. |
|