吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1268-1276.doi: 10.13278/j.cnki.jjuese.20170053

• 地球探测与信息技术 • 上一篇    下一篇

利用测井资料建立地层剪破裂模型

廖东良1,2, 曾义金1,2   

  1. 1. 页岩油气富集机理与有效开发国家重点实验室, 北京 100101;
    2. 中国石化石油工程技术研究院, 北京 100101
  • 收稿日期:2017-11-01 出版日期:2018-07-26 发布日期:2018-07-26
  • 作者简介:廖东良(1974-),男,高级工程师,博士,主要从事测井资料解释和测井工程应用研究,E-mail:liaodl.sripe@sinopec.com
  • 基金资助:
    国家自然科学基金项目(21427812,41474108);中国石化科技攻关项目(P17014-9)

Establishment of Formation Shear Fracture Model by Logging Data

Liao Dongliang1,2, Zeng Yijin1,2   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
  • Received:2017-11-01 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (21427812,41474108) and Scientific and Technological Project of Sinopec (P17014-9)

摘要: 利用测井资料建立地层剪破裂模型是对现有张破裂的有效补充,有利于完善钻井、压裂等石油工程中的破裂机理。运用FMI(地层微电阻率扫描成像)测井资料能识别钻井诱导缝和剪破裂的方位、数量和密度。本文通过对地层剪破裂的理论研究和影响因素分析,利用内摩擦系数与矿物含量之间的非线性假设,建立了地层剪破裂的临界剪应力模型。研究发现,地层中的黏土矿物含量、内摩擦系数、内聚强度和应力大小是诱发剪破裂的重要因素。利用内摩擦系数(或内摩擦角)与泥质体积分数之间的统计回归模型简化了地层剪破裂模型,并增强了模型的适用性。实际资料表明,地层发生剪破裂时的临界剪应力与钻井诱导缝数量之间呈反比关系,理论研究与实际资料具有良好的一致性。

关键词: FMI, 剪破裂, 张破裂, 诱导缝, 内摩擦角

Abstract: The formation shear fracture model is an effective supplement to the extensional fracture model, which is helpful to improve the fracture mechanism of petroleum drilling and fracturing engineering. Using formation microScanner image (FMI) logging data we can determine the orientation, number and density of drilling induced fractures and shear fractures. Through the analysis of the theoretical research and influence factors on the shear fracture of shale formation and using the nonlinear assumption of internal friction coefficient and mineral content, we established the critical stress model of formation shear failure. It is found that the content of clay minerals, internal friction coefficient, cohesive strength and stress are the important factors for the shear fractures. Based on the statistical regression model between the internal friction coefficient (internal friction angle) and the shale content, the formation shear failure model is simplified, and the applicability of the model is enhanced. The actual data show that an inverse relationship exists between the critical stress calculated by the shear failure model and the number of drilling induced fractures. The actual data are in good agreement with the theoretical result.

Key words: formation microscanner image, shear fracture, extensional fracture, drilling induced fractures, internal friction angle

中图分类号: 

  • P631.8
[1] 赵金洲,任岚,胡永全,等. 裂缝性地层射孔井破裂压力计算模型[J]. 石油学报,2012,33(5):841-845. Zhao Jinzhou, Ren Lan, Hu Yongquan, et al. A Calculation Model of Breakdown Pressure for Perforated Wells in Fractured Formations[J]. Acta Petrolei Sinica, 2012, 33(5):841-845.
[2] 金衍,陈勉,张旭东. 天然裂缝地层斜井水力裂缝起裂压力模型研究[J]. 石油学报,2006,27(5):124-126. Jin Yan, Chen Mian, Zhang Xudong. Hydraulic Fracturing Pressure Models for Vertical Wells in Naturally Fractured Formation[J]. Acta Petrolei Sinica, 2006, 27(5):124-126.
[3] 金衍,张旭东,陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报,2005,26(7):113-118. Jin Yan, Zhang Xudong, Chen Mian. Initiation Pressure Models for Hydraulic Fracturing of Directional Wells in Naturally Fractured Formation[J]. Acta Petrolei Sinica, 2005, 26(7):113-118.
[4] 谢海峰,饶秋华,谢强,等. 脆性岩石高温剪切(Ⅱ型)断裂的微观机理[J]. 中国有色金属学报,2008, 18(8):16-20. Xie Haifeng, Rao Qiuhua, Xie Qiang, et al. Plane Shear (Model Ⅱ) Fracture Experiment Analysis of Brittle Rock at High Temperature[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(8):16-20.
[5] 李守定,李晓,郭静芸,等. 岩石拉伸剪破裂试验研究[J]. 工程地质学报, 2014, 22(4):655-666. Li Shouding, Li Xiao, Guo Jingyun, et al. Research of Rock Failure Testing Under Combined Shear and Tension[J]. Journal of Engineering Geology, 2014, 22(4):655-666.
[6] 吴子科. 脆性岩石裂纹尖端扩展状态的混沌动力学分析[D]. 青岛:山东科技大学,2007. Wu Zhike. Chaotic Analysis on Extended State of Crack in Brittle Rock[D]. Qingdao:Shandong University of Science and Technology, 2007.
[7] 牛虎林,胡欣,徐志强,等. 基岩油气藏裂缝性储层的成像测井评价及裂缝预测[J]. 石油学报,2010, 31(2):264-269. Niu Hulin, Hu Xin, Xu Zhiqiang, et al. Evaluation of Imaging Logging and Fracture Prediction in Fractured Basement Reservoirs[J]. Acta Petrolei Sinica, 2010, 31(2):264-269.
[8] 周祥. 不同泥质含量砂岩三轴渗透试验研究[J]. 水文地质工程地质,2017, 44(1):84-90. Zhou Xiang. An Experimental Study on Permeability of Sandstone with Different Shale Contents Under 3-D Stress Conditions[J]. Hydrogeology & Engineering Geology, 2017, 44(1):84-90.
[9] 丁文龙,漆立新,吕海涛,等. 利用FMI资料分析塔河油田南部中-下奥陶统储层构造应力场[J]. 现代地质,2009, 23(5):852-859. Ding Wenlong, Qi Lixin, Lü Haitao, et al. Analysis of the Lower-Middle Ordovician Reservoir Tectonic Stress Field Using FMI Data in the South of Tahe Oilfield[J]. Geoscience, 2009, 23(5):852-859.
[10] 秦军. 利用成像测井技术识别钻井诱导缝[J]. 内蒙古石油化工,2006,32(10):116-117. Qin Jun. Using Imaging Logging to Recognize Drilling Induced Fractures[J]. Inner Mongolia Petrochemical Industry, 2006, 32(10):116-117.
[11] 谢冰,文龙,李梅. 川东北部飞仙关组裂缝发育状况分析[J]. 天然气勘探与开发,2007,30(1):38-44. Xie Bing, Wen Long, Li Mei. Analysis of Fracture Development in Feixianguan Formation, North of East Sichuan[J]. Natural Gas Exploration and Development, 2007, 30(1):38-44.
[12] 宋鹏,王府断陷火石岭组火山岩储层裂缝特征与分布规律[J]. 世界地质,2015,23(3):716-725. Song Peng. Fracture Characteristics and Distribution of Volcanic Reservoir of Huoshiling Formation in Wangfu Fault Depression[J]. Global Geology, 2015, 23(3):716-725.
[13] 王振宇,刘超,张云峰,等. 库车坳陷K区块冲断带深层白垩系致密砂岩裂缝发育规律、控制因素与属性建模研究[J]. 岩石学报,2016, 32(3):865-876. Wang Zhenyu, Liu Chao, Zhang Yunfeng, et al. A Study of Fracture Development,Controlling Factor and Property Modeling of Deep-Lying Tight Sandstone in Cretaceous Thrust Belt K Region of Kuqa Depression[J]. Acta Petrologica Sinica, 2016, 32(3):865-876.
[14] 王玉华. 电成像测井在大庆火成岩储层解释中的应用[J]. 大庆石油地质与开发, 2008, 27(6):128-130. Wang Yuhua. Application of Electrical Imaging Logging in the Well Logging Interpretation of Igneous Rock Reservoir in Daqing[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(6):128-130.
[15] 廖东良,肖立志,张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术, 2014, 42(4):37-41. Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4):37-41.
[16] 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M].合肥:中国科技大学出版社, 2009. Chen Yong, Huang Tingfang, Liu Enru. Petrophysics[M]. Hefei:University of Science and Technology of China Press,2009.
[17] Evans B, Fredrich J, Wong T F. The Brittle-Ductile Transition in Rocks:Recent Experiment and Theoretical Progress[J]. America Goephys Union, 1990, 56:1-20.
[18] Rickman R, Mullen M, Petre E, et al. A Practical Use of Shale Petrophysics for Stimulation Design Optimization:All Shale Plays are not Clones of the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition. Denver:SPE, 2008:21-24.
[19] Jarvie D M, Hill R J, Ruble H J, et al. Uncon-ventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
[20] Dan B, Simon H, Jennifer M, et al. Preophysical Evaluation for Enhancing Hydraulic Stimulation in Horizontal Shale Gas Wells[C]//SPE Annual Technical Conference and Exhibition. Florence:SPE, 2010:19-22.
[21] 王冠民,熊周海,张婕. 岩性差异对泥页岩可压裂性的影响分析[J].吉林大学学报(地球科学版),2016,46(4):1080-1089. Wang Guanmin, Xiong Zhouhai, Zhang Jie. The Impact of Lithology Differences to Shale Fracturing[J]. Journal of Jilin University (Earth Science Edition),2016,46(4):1080-1089.
[22] 王晓杰,彭仕宓,吕本勋,等. 用正交偶极阵列声波测井研究地层地应力场[J]. 中国石油大学学报(自然科学版),2008, 32(4):42-46. Wang Xiaojie, Peng Shimi, Lü Benxun, et al. Researching Earth Stress Field Using Cross-Dipole Acoustic Logging Technology[J]. Journal of China University of Petroleum, 2008, 32(4):42-46.
[1] 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286.
[2] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[3] 李振苓, 沈金松, 李曦宁, 王磊, 淡伟宁, 郭森, 朱忠民, 于仁江. 用形态学滤波从电导率图像中提取缝洞孔隙度谱[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1295-1307.
[4] 肖凡, 陈建国. 基于RCGA的PPC模型在化探异常识别与提取中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1319-1330.
[5] 张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3): 899-906.
[6] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[7] 高建申, 孙建孟, 姜艳娇, 崔利凯. 侧向测井电极系结构影响分析及阵列化测量新方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1874-1883.
[8] 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937.
[9] 张新培, 于雪峰. 利用地球物理信息描述太古宇潜山有效储集体[J]. 吉林大学学报(地球科学版), 2016, 46(1): 270-278.
[10] 赵军, 代新雲, 古莉, 祁新忠, 陈伟中. 基于粒度控制的复杂储层渗透性建模方法[J]. 吉林大学学报(地球科学版), 2016, 46(1): 279-285.
[11] 郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 286-294.
[12] 金博, 黄先雄, 常广发,张胜斌,付海波,李铁柱. 滨里海盆地Д南石炭系碳酸盐岩储层类型及分布特征[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2042-2050.
[13] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[14] 宋延杰,姜艳娇,宋杨,张依妮. 古龙南地区低阻油层胶结指数和饱和度指数影响因素实验[J]. 吉林大学学报(地球科学版), 2014, 44(2): 704-714.
[15] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035-2043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 鲁东晚中生代热隆-伸展构造及其动力学背景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 941 -964 .
[2] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018 -1029 .
[3] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105 -1120 .