吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 839-847.doi: 10.13278/j.cnki.jjuese.201703204

• 地质工程与环境工程 • 上一篇    下一篇

冻融循环作用下黄土的孔隙特征试验

张泽1, 周泓2,3, 秦琦3,4, 邴慧1, 武俊杰1, 周攀峰5   

  1. 1. 中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室, 兰州 730000;
    2. 上海建科工程咨询有限公司, 上海 200032;
    3. 兰州大学土木工程与力学学院, 兰州 730000;
    4. 上海浦桥工程建设管理有限公司, 上海 200032;
    5. 核工业广州工程勘察院, 广州 510800
  • 收稿日期:2016-09-07 出版日期:2017-05-26 发布日期:2017-05-26
  • 作者简介:张泽(1981-),男,副研究员,博士,主要从事寒区工程地质、冻土工程与环境等方面的研究,E-mail:zhangze@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目(41301070,41401087,4101072);甘肃省交通运输厅科技项目(2014-03);青海省交通科学研究院开放基金项目(2016-01-04)

Experimental Study on Porosity Characteristics of Loess Under Freezing-Thawing Cycle

Zhang Ze1, Zhou Hong2,3, Qin Qi3,4, Bing Hui1, Wu Junjie1, Zhou Panfeng5   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Shanghai Jianke Engineering Consulting Co., Ltd., Shanghai 200032, China;
    3. College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China;
    4. Shanghai Puqiao Engineering Construction Management Co., Ltd., Shanghai 200032, China;
    5. Guangzhou Academy of Nuclear Engineering Investigation, Guangzhou 510800, China
  • Received:2016-09-07 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41301070,41401087,4101072), the Scientific and Technical Projects of the Transport Department of Gansu Province (2014-03) and Open Fund Project of Qinghai Traffic Science Research Institute (2016-01-04)

摘要: 为得到冻融循环后黄土孔隙分布的变化规律,以重塑黄土为研究对象,采用压汞法对历经不同冻融循环次数后黄土的孔隙特征进行研究。试验结果表明:冻融作用使土样内部颗粒发生重新排列连结,孔隙结构发生改变,孔隙分布逐步向小孔隙数量减少、大孔隙数量增多方向推进;冻融前10次过程中,孔隙分布变化不稳定,但随着冻融循环次数增加,趋势逐渐明朗,表现为0.01~0.10 μm范围内的超微孔隙数量减少,而5.00~10.00 μm范围内的细微孔隙数量增多;孔隙率也随冻融次数增加先增大,在冻融第8次时达到最大,其后减小,50次后逐渐趋于稳定。根据试验结果,结合孔隙分形进行分析,认为孔隙结构在冻融循环作用下,不均匀性及复杂程度降低。

关键词: 黄土, 冻融循环, 压汞法, 孔隙分布, 孔隙分形

Abstract: Shaanxi Fuping remolded loess was taken as the studied object. Mercury instrusion porosimetry was used to research the porosity characteristics of loess after different freezing-thawing cycles to get the changing rule of the distribution of loess porosity. Test results showed that rearrangement of the soil particles occurred under freezing-thawing cycle, and pore structure changed. At the same time, the number of pores with small size (especially pores of 0.01-0.10 μm) gradually decreased, and the number of pores with large size (especially pores of 5.00-10.00 μm) increased. During the first 10 cycles, the change in pore size distribution was unstable, and with the increase in freezing-thawing cycles, it became clearly. Porosity increased with the increasing freezing-thawing cycles, and reached its peak value after only 8 freezing-thawing cycles, and then it decreased and became stable after 50 cycles. Finally, according to test results and pore fractal dimension, the inhomogeneity and complexity of pore were decreased by the freezing-thawing cycle.

Key words: loess, freezing-thawing cycle, mercury intrusion method, pore distribution, pore fractal

中图分类号: 

  • P642.131
[1] 方丽莉, 齐吉琳, 马巍. 冻融作用对土结构性的影响及其导致的强度变化[J]. 冰川冻土, 2012, 34(2): 435-440. Fang Lili, Qi Jilin, Ma Wei. Freeze-Thaw Induced Changes in Soil Structure and Its Relationship with Variations in Strength[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435-440.
[2] 张英, 邴慧. 基于压汞法的冻融循环对土体孔隙特征影响的试验研究[J]. 冰川冻土, 2015, 37(1): 169-174. Zhang Ying, Bing Hui. Experimental Study of the Effect of Freezing-Thawing Cycles on Porosity Characters of Silty Clay by Using Mercury Intrusion Porosimetry[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 169-174.
[3] 郑飞. 不同压实度黏性土微细观孔隙结构研究及分形表征[D]. 武汉: 湖北工业大学, 2014. Zheng Fei. Different Clayed Soil Compaction Degree Concept of Micro Pore Structure Research and Fractal Characterization[D]. Wuhan: Hubei University of Technology, 2014.
[4] 高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学:A辑, 1980, 10 (12): 1203-1208. Gao Guorui. Classification of Loess Microstructure and Its Collapsibility[J]. Science in China:Series A, 1980, 10(12): 1203-1208.
[5] Lapierre C, Leroueil S, Locat J. Mercury Intrusion and Permeability of Louiseville Clay[J]. Canadian Geotechnical Journal,2000, 27(6): 761-773.
[6] 赵天宇, 张虎元, 严耿升, 等. 河西寒旱区盐渍土地层温湿度变化模式[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1466-1474. Zhao Tianyu, Zhang Huyuan, Yan Gengsheng, et al.Variation Pattern of Temperature and Humidity for Saline Soil in Cold and Arid Regions of Hexi Corridor[J]. Journal of Jilin University (Earth Science Edition), 2016, 46 (5) : 1466-1474.
[7] 马骏骅, 马可, 徐贵娃. 冻融循环作用下黄土状土孔隙分布分形几何研究[J]. 煤炭工程, 2012(增刊2): 129-133. Ma Junhua, Ma Ke, Xu Guiwa. Study of Pore Distribution and Fractal Geometry of Loess Soil Under Freeze-Thaw Cycles[J]. Coal Engineering, 2012(Sup.2): 129-133.
[8] 倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 2014, 36(4): 922-927. Ni Wankui, Shi Huaqiang. Influence of Freezing-Thawing Cycles on Micro-Structure and Shear Strength of Loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922-927.
[9] 肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土, 2014, 36(4): 907-912. Xiao Donghui, Feng Wenjie, Zhang Ze. The Changing Rule of Loess's Porosity Under Freezing-Thawing Cycles[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 907-912.
[10] 张平. 软土孔隙特征及其固结过程中变化的研究[D]. 广州: 华南理工大学, 2011. Zhang Ping. Study on Pore Characteristic of Soft Soil and the Change of Pore Characteristic Between Consolidation Process[D]. Guangzhou: South China University of Technology, 2011.
[11] 蒋明镜, 胡海军, 彭建兵, 等. 应力路径试验前后黄土孔隙变化及与力学特性的联系[J]. 岩土工程学报, 34(8): 1369-1377. Jiang Mingjing, Hu Haijun, Peng Jianbing, et al. Pore Changes of Loess Before and After Stress Path Tests and Their Links with Mechanical Behaviors[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1369-1377.
[12] 上官禾林. 基于压汞法的油页岩孔隙特征的研究[D]. 太原: 太原理工大学, 2014. Shangguan Helin. Research on Oil Shale Pore Characteristics Based on Mercury Intrusion Method[D]. Taiyuan: Taiyuan University of Technology,2014.
[13] 江福河. 压汞法对不同深度软土固结的微观孔隙特征研究[J]. 科学技术与工程, 2011, 11(31): 7701-7706. Jiang Fuhe. The Study of Micro Pore Characteristics on Different Depth Soft Soil Consolidation by Mercury Intrusion Porosimetry[J]. Science Technology and Engineering, 2011,11(31): 7701-7706.
[14] 庄心善, 张立波, 陶高梁, 等. 压汞试验技术研究黏性土微观孔隙分布特性[J]. 湖北工业大学学报, 2013, 28(1): 22-24. Zhuang Xinshan, Zhang Libo, Tao Gaoliang, et al. Experiment Study on Microscopic Pore Distribution Characteristics of Clays Based on the Mercury Intrusion Technology[J]. Journal of Hubei University of Technology, 2013, 28(1): 22-24.
[15] 刘松玉, 张继文. 土中孔隙分布的分形特征[J].东南大学学报, 1997, 27(3): 127-130. Liu Songyu, Zhang Jiwen. Fractal Approach to Measuring Soil Porosity[J]. Journal of Southeast University, 1997, 27(3): 127-130.
[16] 陶高梁. 岩土多孔介质孔隙结构的分形研究及其应用[D].武汉: 武汉理工大学, 2010. Tao Gaoliang. Fractal Approach on Pore Structure of Rock and Soil Porous Media and Its Applications[D]. Wuhan: Wuhan University of Technology, 2010.
[17] Sasanian S,Newson T A. Use of Mercury Intrusion Porosimetry for Microstructural Investigation of Reconstituted Clays at High Water Contents[J]. Engineering Geology, 2013, 158: 15-22.
[18] 唐明, 王甲春, 李连君. 压汞测孔评价混凝土材料孔隙分形特征的研究[J]. 沈阳建筑工程学院学报(自然科学版), 2001, 17(4): 272-275. Tang Ming, Wang Jiachun, Li Lianjun. Research on Fractal Characteristics of Concrete Materials Pore with MIP[J]. Journal of Shenyang Architectural and Civil Engineering University (Nature Science), 2001, 17(4): 272-275.
[1] 彭湘林, 范文, 魏亚妮, 田陆, 邓龙胜. 黄土高原城市工程地质分区——以铜川地区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1480-1490.
[2] 韩朋, 翟云峰, 栗粲圪, 张运, 杨会会, 靳春胜. 末次间冰期以来洛川黄土天然剩磁记录的可靠性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 793-806.
[3] 宿晓萍,王清,王文华,孙昊月. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1244-1253.
[4] 张立原. 中国黄土高原洛川剖面S5以来的孢粉学记录[J]. 吉林大学学报(地球科学版), 2014, 44(1): 222-229.
[5] 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1904-1914.
[6] 吴谦,王常明,马栋和,宋朋燃. 辽西黄土陡坡的冲刷破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1563-1571.
[7] 庄建琦,彭建兵,张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版), 2013, 43(3): 867-876.
[8] 刘维明,杨胜利,方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报(地球科学版), 2013, 43(3): 974-982.
[9] 李滨, 殷跃平, 吴树仁, 石菊松. 多级旋转黄土滑坡形成机理及失稳模式[J]. J4, 2012, 42(3): 760-769.
[10] 安玉科, 佴磊. 冻融循环作用下节理岩体锚固性能退化机理和模式[J]. J4, 2012, 42(2): 462-467.
[11] 武彩霞, 戴福初, 闵弘, 涂新斌, 邝国麟, 周跃峰. 台塬塬顶裂缝对黄土斜坡水文响应的影响[J]. J4, 2011, 41(5): 1512-1519.
[12] 王常明, 马栋和, 林容, 王科, 宋朋燃. 辽西地区黄土的强度与本构特性[J]. J4, 2010, 40(5): 1104-1109.
[13] 王跃, 朱祥坤. 铜同位素在矿床学中的应用:认识与进展[J]. J4, 2010, 40(4): 739-751.
[14] 李秉成,胡培华,王艳娟. 关中泾阳塬全新世黄土剖面磁化率的古气候阶段划分[J]. J4, 2009, 39(1): 99-0106.
[15] 靳春胜,张立原,韩家懋,刘东生. 末次间冰期以来黄土古土壤容重特征[J]. J4, 2008, 38(5): 801-0805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!