吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1019-1029.doi: 10.13278/j.cnki.jjuese.20200163

• 地质与资源 • 上一篇    下一篇

豫西登封地区寒武系张夏组中部生物扰动构造及其地质意义

王玉洁, 王敏   

  1. 河南理工大学资源环境学院, 河南 焦作 454000
  • 收稿日期:2020-07-16 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 王敏(1982-),女,副教授,主要从事遗迹化石与古生态学研究,E-mail:gismin1113@163.com E-mail:gismin1113@163.com
  • 作者简介:王玉洁(1995-),女,硕士研究生,主要从事遗迹化石研究,E-mail:386154753@qq.com
  • 基金资助:
    国家自然科学基金项目(41502106);河南理工大学博士基金资助项目(B2014-072)

Bioturbation Structure and Their Geological Implications from Zhangxia Formation of Cambrian in Dengfeng Area,Western Henan Province

Wang Yujie, Wang Min   

  1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan, China
  • Received:2020-07-16 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41502106) and the Doctoral Fund Project of Henan Polytechnic University (B2014-072)

摘要: 掘穴生物作为生态系统工程的建造者,其对沉积物进行的改造直接影响了沉积物的物理化学性质,进而影响了底栖生态系统。豫西登封地区寒武系苗岭统张夏组中部薄层微晶灰岩中发育大量的生物扰动构造,利用地球生物学、古生物学和生物扰动指数等方法,探讨了生物扰动构造的形成环境及其对沉积物的影响。研究表明,研究区张夏组中部生物扰动构造特征多为扰动边界模糊不清,生物扰动指数(BI)为2 ~ 5,说明该沉积期食物充足,氧气含量高。此外,在生物扰动中识别出3种遗迹化石:Thalassinoides bacae,Planolites isp.和Rhizocorallium isp.,说明生物扰动构造为多种生物造迹形成的。依据寒武系苗岭统张夏组中部的遗迹化石以及沉积特征,可知其整体处于偶尔受到风暴影响的滩间局限台地环境。

关键词: 生物扰动构造, 张夏组, 豫西地区, 寒武系, 遗迹化石, 局限台地

Abstract: Burrowing animals as the builders of ecosystem engineering, their bioturbation structures affect the physical and chemical properies of sediments, which are important for the benthic ecosystems. Abundant of bioturbation structures are preserved in the laminated microcrystalline limestone in the middle part of the Cambrian Miaolingian Zhangxia Formation, Dengfeng area, western Henan Province. In this paper, the methods of geobiology, paleontology and bioturbation index (BI) are used to investigate the depositional environment of the bioturbation structures and their influence on sediments. Most of bioturbation structures have blurred boundaries. The bioturbation index is 2-5, indicating sufficient food supply and high oxygen content in the sediments during the deposition period. In addition, three types of trace fossils are recognized:Thalassinoides bacae, Planolites isp. and Rhizocorallium isp, indicate that the bioturbation sturctures are created by more than one trace maker. The research on the trace fossils and sedimentary characteristics of the Zhangxia Formation indicates a restricted platform environment between oolitic banks that occasionally affected by storms.

Key words: bioturbation structures, Zhangxia Formation, western Henan, Cambrian, trace fossils, restricted platform

中图分类号: 

  • P52
[1] Rhoads D C, Young D K. The Influence of Deposit-Feeding Organisms on Sediment Stability and Community Trophic Structure[J]. Journal of Marine Research, 1970, 28:150-178.
[2] Jones C G. Organisms as Ecosystem Engineers[M]. Berlin:Springer, 1995.
[3] Herringshaw L G, Callow R H T, McIlroy D. Engineering the Cambrian Explosion:The Earliest Bioturbators as Ecosystem Engineers[J]. Geological Society, 2017, 448:369-382.
[4] Dornbos S Q, Bottjer D J, Chen J Y. Paleoecology of Benthic Metazoans in the Early Cambrian Maotianshan Shale Biota and the Middle Cambrian Burgess Shale Biota:Evidence for the Cambrian Substrate Revolution[J]. Palaeogeography, Palaeoclimatology, Palaeoe-cology, 2005, 220:47-67.
[5] 冯增昭,彭勇民,金振奎,等.中国晚寒武世岩相古地理[J].古地理学报, 2002,4(3):4-13. Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al.Lithfacies Palaeogeogarphy of Late Cambrian in China[J]. Journal of Palaeogeography,2002,4(3):4-13.
[6] 裴放,张海清,阎国顺,等.河南省地层古生物研究:第3分册:早古生代华北型[M].郑州:黄河水利出版社, 2008. Pei Fang, Zhang Haiqing, Yan Guoshun, et al. Study of Stratigraphic Paleontologyin Henan Province:Vol Ⅲ:Eaerly Paleozoic North China[M]. Zhengzhou:Yellow River Conservancy Press, 2008.
[7] 裴放,王建平,王世炎,等.河南省中寒武世岩相古地理[J].古地理学报,2012,14(4):423-436. Pei Fang, Wang Jianping, Wang Shiyan, et al. The Middle Cambrian Lithofacies Palaeogeography in Henan Province[J]. Journal of Palaeogeography,2012,14(4):423-436.
[8] 刘怀书,刘书才,游文澄.山东中寒武统张夏组[J].地层学杂志,1987,11(3):200-206. Liu Huaishu, Liu Shucai, You Wendeng. Zhangxia Formation of Middle Cambrian, Shandong[J]. Journal of Stratigraphy,1987,11(3):200-206.
[9] 张文堂.华北及东北南部早及中寒武世三叶虫的分类及新属,新科的记述[J].古生物学报,1963,11(4):447-487. Zhang Wentang. A Classification of the Lower and Middle Cambrian Trilobites from North and Northeastern China, with Description of New Families and New Genera[J]. Acta Palaeontologica Sinca,1963,11(4):447-487.
[10] 吕钊炜, 张宁, 夏文臣. 山东省长清县中寒武统张夏组的微相组分、微相类型及沉积相分析[J]. 地质科技情报, 2009,28(5):47-52. Lü Zhaowei, Zhang Ning, Xia Wenchen. Types and Composition of Carbonate Microfacies and Analysis on Sedimentary Facies of Middle Cambrian Zhangxia Formation in Changqing, Shangdong Province[J]. Geological Science and Technology Information,2009,28(5):47-52.
[11] 郭芪恒,金振奎,安益辰,等.北京下苇甸地区张夏组沉积环境及沉积模式[J].沉积学报,2019,37(1):40-50. Guo Qiheng, Jin Zhenkui, An Yichen, et al. Study on Sedimentary Environment and Patterns of the Cambrian Zhangxia Formation at Xiaweidian, Beijing[J]. Acta Sedimentologica Sinica,2019,37(1):40-50.
[12] 梅冥相,马永生,梅仕龙,等.华北寒武系层序地层格架及碳酸盐台地演化[J].现代地质,1997,11(3):275-282. Mei Mingxiang, Ma Yongsheng, Mei Shilong, et al. Framwork of Cambrian Sedimentary Sequence and Evolution of Carbonate Platform in North China[J]. Geoscience,1997,11(3):275-282.
[13] 张国仁,汪国祯,曲洪祥,等.辽宁省复州西南部张夏组上段高频率旋回地层及复合海平面变化[J].中国区域地质,1997,16(3):321-328. Zhang Guoren, Wang Guozhen, Qu Hongxiang, et al. High-Frequency Cyclic Sequences and Composite Sea-Level Change in the Upper Member of the Zhangxia Formation in Fuzhou, Liaoning Province[J]. Regional Geology of China,1997,16(3):321-328.
[14] 陈建强,史晓颖,张国仁,等.华北地台中寒武统张夏组上部高频层序研究[J].地层学杂志,1998,22(2):109-115. Chen Jianqiang, Shi Xiaoying, Zhang Guoren, et al. High-Frequency Sequence-Stratigraphy of the Upper Changxia Formation in the North China Platform[J]. Journal of Stratigraphy, 1998,22(2):109-115.
[15] 齐永安,孙长彦,王敏,等.河南登封地区寒武系第三统张夏组米级旋回及其演化[J].地层学杂志,2013,37(1):101-111. Qi Yong'an, Sun Changyan, Wang Min, et al. Meter-Scale Cycles and Their Evolution from the Cambrian Zhangxia Formation, Dengfeng Area, Henan[J]. Jouranl of Stratigraphy,2013,37(1):101-111.
[16] 杨文涛,李凯楠,王敏,等.豫西寒武系第三统张夏组Schaubcylindrichnus heberti及其生态学特征[J].古生物学报,2017,56(3):312-321. Yang Wentao, Li Kainan, Wang Min, et al.Schaubcylindrichnus heberti from the Zhangxia Formation (Cambrian Series 3) in Henan Province and Its Ethological Characteristics[J]. Acta Palaeontolgica Sinica,2017,56(3):312-321.
[17] Wang M, Li K N, Yang W T, et al. The Trace Fossil Thalassinoides Bacae in the Cambrian Zhangxia Formation (Miaolingian Series) of North China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2019, 534:109333.
[18] 李凯楠,王敏,齐永安,等.豫西寒武系苗岭统张夏组Thalassinoides bacae中莓状黄铁矿的成因及其生态学意义[J].古生物学报,2019,58(4):445-455. Li Kainan, Wang Min, Qi Yong'an, et al. Framboidal Pyrites in Thalassinoides bacae from the Zhangxia Formation(Cambrian Miaolingian Series) in Henan Province:Genesis and Its Ecological Significance[J]. Acta Palaeontologica Sinica,2019,58(4):445-455.
[19] 仲聪聪,王敏,李凯楠,等.豫西登封地区寒武系苗岭统张夏组碳同位素组成特征及其地层学意义[J].河南理工大学学报(自然科学版),2020,39(1):37-46. Zhong Congcong, Wang Min, Li Kainan, et al. Carbon Isotope Composition Characteristics and Its Stratigraphic Significance in Zhangxia Formation, Miaolingian Seres of Cambrianin Dengfeng, Western Henan[J]. Journal of Henan Polytechnic University(Natural Sicence),2020,39(1):37-46.
[20] 齐永安, 王敏, 李妲,等. 洛阳龙门地区中寒武统张夏组下部遗迹组构及其沉积环境[J]. 地球科学:中国地质大学学报, 2012,37(4):693-706. Qi Yong'an, Wang Min, Li Da, et al. Ichnofabrics and Their Sedimentary Environments from the Lower Part of the Middle Cambrian Zhangxia Formation, Longmen Area, Luoyang City[J]. Earth Science:Journal of China University of Geosciences, 2012,37(4):693-706.
[21] 樊钰超,齐永安,代明月,等. 豫西登封地区寒武系第二统朱砂洞组古气候演变记录[J]. 古地理学报, 2020, 22(2):367-376. Fan Yuchao,Qi Yong'an, Dai Mingyue, et al. Paleoclimate Evolution Recorded in the Cambrian Epoch 2 Zhushadong Formation from Dengfeng Area, Western Henan Province[J]. Journal of Palaeogeography, 2020, 22(2):367-376.
[22] Taylor A M, Goldring R. Description and Analysis of Bioturbation and Ichnofabric[J]. Journal of the Geological Society, 1993,150(1):141-148.
[23] Ekdale A A, Bromley R G. Paleoethologic Interpretation of Complex Thalassinoides in Shallow-Marine Limestone, Lower Ordovician, Southern Sweden[J]. Palaeogeography, Palaeoclimatology, Palaeoecololgy, 2003,192:221-227.
[24] 杨式溥,张建平,杨美芳.中国遗迹化石[M].北京:科学出版社,2004:29-263. Yang Shipu, Zhang Jianping, Yang Meifang. Trace Fossils in China[M]. Beijing:Science Press, 2004:29-263.
[25] 李晓波,张梅生,王旖旎.辽宁省葫芦岛地区寒武纪遗迹化石及其古生态意义[J].古生物学报,2016,55(1):31-44. Li Xiaobo, Zhang Meisheng, Wang Yini. Cambrian Trace Fossils and Their Paleoecololgical Significances from the Huludao Area, Liaoning Province, China[J]. Acta Palaeontologica Sinica,2016,55(1):31-44.
[26] Pemberton S G, Frey R W. Trace Fossil Nomenclature and the Planolites-Palaeophycus Dilemma[J]. Journal of Palaeontology, 1982,56:843-881.
[27] Basan P B, Scott R W. Morphology of Rhizocorallium and Associated Traces from the Lower Cretaceous Purgatoire Formation, Colorado[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1979,28:5-23.
[28] Knaust D. The Ichnogenus Rhizocorallium:Classification, Trace Makers, Palaeoenvironments and Evolution[J]. Earth Science Reviews, 2013,126:1-47.
[29] Kvale E P, Johnson G D, Mickelson D L, et al. Middle Jurassic(Bajocian and Bathonian) Dinosaur Megatracksites, Bighorn Basin, Wyoming, U S A[J]. Palaios, 2001,16:233-254.
[30] Rodríguez-Tovar F J, Pérez-Valera F, Pérez-López A. Ichnological Analysis in High-Resolution Sequence Stratigraphy:The Glossifungites Ichnofacies in Triassic Successions from the Betic Cordillera (Southern Spain)[J]. Sedimentary Geology, 2007, 198:293-307.
[31] Knaust D. Atlas of Trace Fossils in Well Core:Appearance, Taxonomy and Interpretation[M]. Amsterdam:Elsevier, 2017.
[32] 陈璐,陆廷清,郭溦,等.川西南峨眉山地区上白垩统夹关组遗迹组构特征及其环境意义[J].古生物学报,2019,58(2):222-231. Chen Lu, Lu Tingqing, Guo Wei, et al. Ichnofabrics and Their Environmental Significance from the Upper Cretaceous Jiaguan Formation in Emei MT Area, Southwest Sichuan Basin[J]. Acta Palaeontologica Sinica,2019,58(2):222-231.
[33] Francisco J, Rodríguez T, Fernando P V. Trace Fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain:Characterization and Environmental Implications[J]. Palaios,2008, 23(2):78-86.
[34] 鄢伟,张光学,樊太亮,等. 塔里木盆地塔中-顺托果勒地区奥陶系良里塔格组碳酸盐岩颗粒滩沉积特征[J]. 吉林大学学报(地球科学版), 2019,49(3):621-636. Yan Wei, Zhang Guangxue, Fan Tailiang, et al. Sedimentary Characteristics of Carbonate Shoals of Ordovician Lianglitage Formation in Tazhong and Shuntuoguole Area, Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):621-636.
[35] 易海永,崔宝琛,王瑶琳,等. 四川盆地广安地区中二叠统栖霞组岩石特征与沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2):454-464. Yi Haiyong, Cui Baochen, Wang Yaolin, et al. Petrological Characteristics and Sedimentary Environment of Qixia Formation in Guang'an Area, Sichuan Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2):454-464.
[36] 金振奎,石良,高白水,等.碳酸盐岩沉积相及相模式[J].沉积学报,2013,31(6):965-979. Jin Zhenkui, Shi Liang, Gao Baishui, et al. Carbonate Facies and Facies Modes[J]. Acta Sedimentologica Sinica,2013,31(6):965-979.
[37] Bottjer D J. Geobiology and the Fossil Record:Eukaryotes, Microbes, and Their Interactions[J]. Palaeogeography, Palaeoclimatology, Palaeoecololgy,2005,219:5-21.
[38] Chen J Y. Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian[J]. Science, 2004, 305:218-222.
[39] Seilacher A, Pfluger F. From Biomats to Benthic Agriculture:A Biohistoric Revolution[C]//Krumbein W E, Peterson D M, Stal L J. Biostabilization of Sediments. Oldenburg:Bibliothesks and Informationssystem der Carl von Ossietzky Universität, 1994:97-105.
[40] Meysman F, Middelburg J, Heip C. Bioturbation:A Fresh Look at Darwin's Last Idea[J]. Trends in Ecology & Evolution, 2006,21(12):688-695.
[41] Babcock L E. Interpretation of Biological and Environmental Changes Across the Neoproterozoic-Cambrian Boundary:Developing a Refined Understanding of the Radiation and Preservational Record of Early Multicellular Organisms[J]. Palaeogeography, Palaeoclimatology, Palaeoecololgy, 2005,220:1-5.
[42] Witbaard R, Duineveld G C A. Some Aspects of the Biology and Ecology of the Burrowing Shrimp Callianassa-Subterranea (Montagu) (Thalassini-dea) from the Southern North Sea[J]. Sarsia, 1989, 74:209-219.
[43] Ziebis W, Forster S, Huettel M, et al. Complex Burrows of the Mud Shrimp Callianassa Truncata and Their Geochemical Impact in the Sea Bed[J]. Nature, 1996, 382:619-622.
[44] Deena Pillay, George Branch. Bioengineering Effects of Burrowing Thalassinidean Shrimps on Marine Soft-Bottom Ecosystems[J]. Oceanography and Marine Biology:An Annual Review, 2011, 49:137-192.
[45] Aller R C. Bioturbation and Remineralization of Sedimentary Organic Matter:Effects of Redox Oscillation[J]. Chemical Geology, 1994, 114:331-345.
[46] Stamhuis E J, Schreurs C E, Videler J J. Burrow Architecture and Turbative Activity of the Thalassinid Shrimp Callianassa Subterranea from the Central North Sea[J]. Marine Ecology Progress Series, 1997, 151:155-163.
[47] D'Andrea A F, de Witt T H. Geochemical Ecosystem Engineering by the Mud Shrimp Upogebia Pugettensis (Crustacea:Thalassinidae) in Yaquina Bay, Oregon:Density-Dependent Effects on Organic Matter Remineralization and Nutrient Cycling[J]. Limnology and Oceanography, 2009, 54(6):1911-1932.
[48] Repetto M, Griffen B D. Physiological Consequences of Parasite Infection in the Burrowing Mud Shrimp, Upogebia Pugettensis, a Widespread Ecosystem Engineer[J]. Marine and Freshwater Research, 2012, 63:60-67.
[49] Koike I, Mukai H. Oxygen and Inorganic Nitrogen Contents and Fluxes in Burrows of the Shrimps Callianassa Japonica and Upogebia Major[J]. Marine Ecology Progress Series, 1983, 12:185-190.
[50] Kinoshita K, Wada M, Kogure K, et al. Microbial Activity and Accumulation of Organic Matter in the Burrow of the Mud Shrimp, Upogebiamajor (Crustacea:Thalassinidea)[J]. Marine Biology, 2008, 153:277-283.
[51] Aller R C. The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water[J]. Topic in Geobiology, 1982,10:53-102.
[52] Bromley R G. Trace Fossils:Biology and Taphonomy[J]. Special Topics in Paleontology, 1990, 3(1):1-281.
[53] Fan Y C, Qi Y A, Dai M Y, et al. Bioturbation of Thalassinoides from the Lower Cambrian Zhushadong Formation of Dengfeng Area, Henan Province, North China[J]. Journal of Palaeogeography, 2021, 10(1):39-54.
[1] 吴和源, 赵宗举, 汪建国, 王培玺, 龚发雄, 肖飞. 华北克拉通北缘寒武系层序地层划分[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1609-1624.
[2] 陈斐然, 张颖, 徐祖新, 谭程, 周肖肖. 全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 974-989.
[3] 刘丽红, 杜小弟, 徐守礼, 文华国. 四川盆地中南部寒武系白云岩特征及形成机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 775-784.
[4] 孔庆莹, 程日辉. 塔里木盆地孔雀河地区寒武系-下奥陶统沉积特征[J]. J4, 2010, 40(3): 527-534.
[5] 李忠雄, 何江林, 熊兴国, 吴涛, 白培荣. 藏北羌塘盆地上侏罗-下白垩统胜利河油页岩特征及其形成环境[J]. J4, 2010, 40(2): 264-272.
[6] 匡文龙,杨绍祥,刘新华,陈新跃,余沛然,劳可通. 湘西北渔塘地区寒武系清虚洞组风暴岩及其地质意义[J]. J4, 2008, 38(2): 225-0232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[2] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[3] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .
[4] 薛永超, 程林松, 付 广. 大庆长垣以东地区登二段泥质岩盖层封气能力综合评价[J]. J4, 2005, 35(05): 626 -631 .
[5] 刘菁华,王祝文,刘树田,王晓丽. 城市活动断裂带的土壤氡、汞气评价方法[J]. J4, 2006, 36(02): 295 -0297 .
[6] 刘祥. 长白山火山历史上最大火山爆发火山碎屑物层序与分布[J]. J4, 2006, 36(03): 313 -318 .
[7] 郑坤,刘修国,吴信才,杨慧. 顾及拓扑面向实体的三维矢量数据模型[J]. J4, 2006, 36(03): 474 -479 .
[8] 尹 潘,胡光道. 基于GDW的空间数据融合[J]. J4, 2006, 36(03): 486 -490 .
[9] 孔庆莹,程日辉,胡艳飞. 周口坳陷谭庄-沈丘凹陷早白垩世沉积相类型和层序地层特征[J]. J4, 2006, 36(04): 557 -562 .
[10] 迟宝明,易树平,李治军,周彦章. 大连地区水资源人工调控研究[J]. J4, 2005, 35(05): 632 -635 .