吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1006-1018.doi: 10.13278/j.cnki.jjuese.20200122

• 地质与资源 • 上一篇    下一篇

一种板内小尺度走滑断层平面分段研究方法——以塔里木盆地顺北5号断层中北段为例

林波1,2, 云露3, 张旭4, 肖重阳1, 况安鹏1, 徐学纯2, 曹自成4   

  1. 1. 中国石化西北油田分公司勘探开发研究院, 乌鲁木齐 830011;
    2. 吉林大学地球科学学院, 长春 130061;
    3. 中国石化西北油田分公司, 乌鲁木齐 830011;
    4. 中国石化西北油田分公司雅克拉采气厂, 新疆 库车 842003
  • 收稿日期:2020-05-15 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:林波(1989-),男,助理研究员,博士,主要从事石油气勘探方面的研究工作,E-mail:linbo_nwpb@163.com
  • 基金资助:
    国家科技重大专项项目(2017ZX05005-002);中国石化西北油田分公司项目(KJ201738);中国石化科技部项目(P21033-1,P21071);博士后科学基金面上项目(2018M6331865)

A Method for Plane Segmentation of Small-Scale Intraplate Strike-Slip Faults: A Case of the Middle-North Segment of Shunbei No. 5 Fault in Tarim Basin

Lin Bo1,2, Yun Lu3, Zhang Xu4, Xiao Chongyang1, Kuang Anpeng1, Xu Xuechun2, Cao Zicheng4   

  1. 1. Exploration and Production Research Institute, Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    2. College of Earth Sciences, Jilin University, Changchun 130061, China;
    3. Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    4. Yakela Gas Production Plant of Sinopec Northwest Oilfield Company, Kuche 842003, Xinjiang, China
  • Received:2020-05-15 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Science and Technology Major Project (2017ZX05005-002), the Project of Northwest Oilfield Company, Sinopec (KJ201738),the Project of Science and Technology Department,Sinopec (P21033-1,P21071) and China Postdoctoral Science Foundation (2018M6331865)

摘要: 近年来在顺北地区1号和5号走滑断层带上获得了重大的油气突破,证明了在塔里木盆地内发育的小尺度走滑断层对断控油气藏具有控藏、控储的特征。该类走滑断层在剖面上贯穿多套古生代地层,纵向结构复杂,在空间上为深层线性走滑叠加浅层雁列正断层的构造样式,钻井揭示在断层带上不同分段的井产能差异明显,表明走滑断层在奥陶系碳酸盐岩顶界面的分段性对油气成藏具有重要的控制作用。本文选取顺北5号断层中北段作为研究对象,针对深层不同层系线性走滑断层分段特征差异明显这一特征,基于不同尺度下断层的断距与分段长度之间的相关性及多断层演化理论,提出了利用沿着走向等间距统计断层的垂向断距变化的方法对深层线性走滑断层开展分段性研究工作,该方法综合了断层的活动强度、演化程度和剖面构造形态来分析断层的分段特征,适用于不同性质的断层分段性特征研究。研究表明5号断层中北段在奥陶系碳酸盐岩顶界面可划分为14段,在寒武系膏盐岩层顶界面可划分为10段,两个层系的断层分段性在空间上具有继承性与差异演化的特点,其中寒武系膏盐岩滑脱构造中的膏盐逃逸对油气的疏导具有破坏作用,奥陶系碳酸盐岩顶断层活动强度、分段叠接样式、断层分段不同位置对断控缝洞型储层发育规模具有重要的控制作用,揭示了断层在平面上的分段特征及纵向结构对断控缝洞型油气成藏具有重要的控制作用。

关键词: 走滑断层, 分段性, 断控缝洞型油气藏, 顺北地区, 塔里木盆地

Abstract: In recent years, major oil and gas breakthroughs have been made around the No. 1 and No. 5 strike-slip fault zones in Shunbei area, which reveals that the small-scale strike-slip faults developed in Tarim basin have the characteristics of controlling reservoir and reservoir of fault-controlled oil and gas reservoirs. The strike-slip faults cut through several sets of Paleozoic strata in the section, which complicates the longitudinal structures that show a style of deep linear strike-slip superimposed shallow echelon normal fault in space. Drilling reveals that the productivity of wells is significantly different in different sections of the fault zone, and the segmentations of the strike-slip faults at the top interface of Ordovician carbonate rocks plays an important role in controlling oil and gas accumulation. The middle-north section of Shunbei No. 5 fault is selected as the research object based on the correlation between the fault distances and segment lengths at different scales and the theory of multi-fault evolution. A method is proposed to carry out segmental research on the deep linear strike-slip faults by using the changes of statistical vertical distances along the strike faults. This method is universal, and it can be used to study the segmentation of different types of faults, combining with the intensity of fault activity, the degree of evolution, and the structural shape of the section, so as to analyze the segmentation characteristics of the faults. The study shows that the middle-north part of No. 5 fault can be divided into 14 segments at the top interface of Ordovician carbonate rocks and 10 segments at the top interface of Cambrian gypsum-salt strata. The fault segmentations of the two strata have the characteristics of inheritance and differential evolution in space. The result shows that the escape of gypsum salt from the detachment structure of the Cambrian gypsum salt rock has a destructive effect on the drainage of oil and gas; While the intensity of the fault activity, segmented overlap pattern, and different positions of fault segments on the top of Ordovician carbonate rocks play an important role in controlling the development scale of fault-controlled fracture-cave reservoirs. This implies that the segmented characteristics and vertical structure of in-plane faults play an important role in controlling fracture-cave hydrocarbon accumulation.

Key words: strike-slip fault, fault segmentation, fault-controlled reservoir of fracture-cave, Shunbei area, Tarim basin

中图分类号: 

  • TE122.2
[1] Fossen H. Structural Geology[M]. Cambridge:Cambridge University Press, 2010.
[2] Busby C,Pérez A. Tectonics of Sedimentary Basins[M].[L.n.]:Wiley, 2011.
[3] Cunningham W D, Mann P. Tectonics of Strike-Slip Restraining and Releasing Bends[J]. Geological Society London Special Publications, 2007, 290(1):1-12.
[4] Riller U, Clark M D, Daxberger H, et al. Fault-Slip Inversions:Their Importance in Terms of Strain, Heterogeneity, and Kinematics of Brittle Deformation-Science Direct[J]. Journal of Structural Geology, 2017, 101:80-95.
[5] Hensen C, Scholz F, Nuzzo M, et al. Strike-Slip Faults Mediate the Rise of Crustal-Derived Fluids and Mud Volcanism in the Deep Sea[J]. Geology, 2015, 43(4):339-342.
[6] Woodcock N H, Fischer M. Strike-Slip Duplexes[J]. Journal of Structural Geology, 1986, 8(7):725-735.
[7] 李萌, 汤良杰, 李宗杰, 等. 走滑断裂特征对油气勘探方向的选择:以塔中北坡顺1井区为例[J]. 石油实验地质, 2016,38(1):113-121. Li Meng, Tang Liangjie, Li Zongjie, et al. Fault Characteristics and Their Petroleum Geology Significance:A Case Study of Well Shun-1 on the Northern Slope of the Central Tarim Basin[J]. Petroleum Geology & Experiment, 2016, 38(1):113-121.
[8] 马德波, 邬光辉, 朱永峰, 等. 塔里木盆地深层走滑断层分段特征及对油气富集的控制:以塔北地区哈拉哈塘油田奥陶系走滑断层为例[J]. 地学前缘, 2019, 26(1):225-237. Ma Debo, Wu Guanghui, Zhu Yongfeng, et al. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment:Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example[J]. Earth Scinece Frontiers, 2019, 26(1):225-237.
[9] Lin B, Zhang X, Xu X, et al. Features and Effects of Basement Faults on Deposition in the Tarim Basin[J]. Earth Science Reviews, 2015, 145:43-55.
[10] Choi J H, Edwards P, Ko K, et al. Definition and Classification of Fault Damage Zones:A Review and a New Methodological Approach[J]. Earth Science Reviews, 2016, 152:70-87.
[11] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5):878-888. Deng Shang, Li Huili, Zhang Zhongpei, et al. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5):878-888.
[12] 李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12):1470-1484. Li Yingtao, Qi Lixin, Zhang Shaonan, et al. Characteristics and Development Modeofthe Middle and Lower Ordovician Fault-Karstres Ervoirin Shunbei Area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12):1470-1484.
[13] 吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4):444-452. Lü Haitao, Zhang Shaonan, Ma Qingyou. Classification and Formation Mechanism of Fault Systems in the Central and Northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4):444-452.
[14] 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6):925-934. Zheng Menglin, Wang Yi, Jin Zhijun, et al. Superimposition, Evolution and Petroleum Accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6):925-934.
[15] 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3):379-389. Huang Cheng.Multi-Stage Activity Characteristics of Small-Scale Strike-Slip Faults in Superimposed Basin and Its Identification Method:A Case Study of Shunbei Area, Tarim[J]. Petroleum Experimental Geology, 2019, 41(3):379-389.
[16] 邓尚, 李慧莉, 韩俊, 等. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J]. 石油与天然气地质, 2019, 40(5):990-998,1073. Deng Shang, Li Huili, Han Jun, et al. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Areaand Its Surroundings,Tarim Basin[J]. Oil & Gas Geology, 2019, 40(5):990-998,1073.
[17] Kim Y S,Sanderson D J. The Relationship Between Displacement and Length of Faults:A Review[J]. Earth Science Reviews, 2005, 68(3/4):317-334.
[18] Aydin A, Berryman J G. Analysis of the Growth of Strike-Slip Faults Using Effective Medium Theory[J]. Journal of Structural Geology, 2010, 32(11):1629-1642.
[19] Kim Y S, Andrews J R, Sanderson D J. Damage Zones Around Strike-Slip Fault Systems and Strike-Slip Fault Evolution, Crackington Haven, Southwest England[J]. Geosciences Journal, 2000, 4(2):53-72.
[20] Kim Y S, Sanderson D J. Inferred Fluid Flow Through Fault Damage Zones Based on the Observation of Stalactites in Carbonate Caves[J]. Journal of Structural Geology, 2010, 32(9):1305-1316.
[21] Khalil S M, Mcclay K R. 3D Geometry and Kinematic Evolution of Extensional Fault-Related Folds, NW Red Sea, Egypt[J]. Geological Society London Special Publications, 2016:SP439.11.
[22] Aydin A, Joussineau G D. The Relationship Between Normal and Strike-Slip Faults in Valley of Fire State Park, Nevada, and Its Implications for Stress Rotation and Partitioning of Deformation in the East-Central Basin and Range[J]. Journal of Structural Geology, 2014, 63(3):12-26.
[23] 鞠玮, 侯贵廷, 潘文庆, 等. 塔中Ⅰ号断裂带北段构造裂缝面密度与分形统计[J].地学前缘, 2011, 18(3):317-323. Ju Wei, Hou Guiting, Pan Wenqing, et al. The Density and Fractals of Structural Fractures in Northern Segment of Tazhong No.1 Fault, Xinjiang, China[J]. Earth Science Frontiers, 2011, 18(3):317-323.
[24] 张庆莲, 侯贵廷, 潘文庆, 等. 构造裂缝的分形研究[J]. 应用基础与工程科学学报, 2011, 19(6):853-861. Zhang Qinglian, Hou Guiting, Pan Wenqing, et al. Fractal Study on Structural Fracture[J]. Journal of Applied Basic and Engineering Sciences, 2011, 19(6):853-861.
[25] Kim Y S, Sanderson D J. Structural Similarity and Variety at the Tips in a Wide Range of Strike-Slip Faults:A Review[J]. Terra Nova, 2006, 18(5):330-344.
[26] Mcclay K R, Bonora M. Analog Models of Restraining Stepovers in Strike-Slip Fault Systems[J]. Aapg Bulletin, 2001, 85(2):233-260.
[27] Richard P D. Experimental Models of Strike-Slip Tectonics[J]. Petroleum Geoscience, 1995, 1(1):71-80.
[28] 汤良杰. 略论塔里木古生代盆地演化[J]. 现代地质, 1997,11(1):14-20. Tang Liangjie. A Discussion on Palaozoic Tectonic Evoluton of Tarim Basin, Northwest China[J]. Geosciences,1997, 11(1):14-20.
[29] 汤良杰, 邱海峻, 云露, 等. 塔里木盆地多期改造晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1):1-14. Tang Liangjie, Qiu Haijun, Yun Lu, et al. Poly-Phase Reform-Late-Stage Finalization Composite Tectonics and Strategic Area Selection of Oil and Gas Resources in Tarim Basin, NW China[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1):1-14.
[30] 汤良杰, 张一伟, 金之钧, 等. 塔里木盆地、柴达木盆地的开合旋回[J]. 地质通报, 2004, 23(3):254-260. Tang Liangjie, Zhang Yiwei, Jin Zhijun, et al. Opening-Closing Cycles of the Tarim and Qaidam Basins Northwestern China[J]. Geological Bulletin of China, 2004, 23(3):254-260.
[31] 韩晓影, 汤良杰, 曹自成, 等. 塔中北坡"复合花状"构造发育特征及成因机制[J]. 地球科学, 2018, 43(2):525-537. Han Xiaoying, Tang Liangjie, Cao Zicheng, et al. Characteristics and Formation Mechanism of Composite Flower Structures in Northern Slope of Tazhong Uplift, Tarim Basin[J].Earth Science, 2018, 43(2):525-537.
[32] 韩强, 云露, 蒋华山,等.塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3):645-658. Han Qiang, Yun Lu, Jiang Huashan, et al. Marine Oil and Gas Filling and Accumulation Process in the North of Shuntuoguole Area in Northern Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3):645-658.
[33] 林波,张旭,况安鹏,等. 塔里木盆地走滑断裂构造变形特征及其油气意义:以顺北地区1号和5号断裂为例[J]. 石油学报,2021,42(7):906-923. Lin Bo, Zhang Xu, Kuang Anpeng, et al. Structural Deformation Characteristics of Strike-Slip Faults in Tarim Basin and Its Hydrocarbon Significance:A Case of Shunbei No.1 Fault and No.5 Fault[J]. Acta Petrolei Sinica, 2021, 42(7):906-923.
[1] 韩强, 云露, 蒋华山, 邵小明, 金仙梅. 塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 645-658.
[2] 陈秀艳, 王剑, 张立平, 马德波, 周波. 塔里木盆地哈拉哈塘地区石炭系东河砂岩段碳酸盐胶结物沉积特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(2): 509-517.
[3] 杨庚, 陈竹新, 刘银河, 王晓波. 塔里木盆地巴楚隆起北缘吐木休克弧形基底卷入斜向滑移构造[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1209-1221.
[4] 王昱翔, 顾忆, 傅强, 王斌, 万旸璐, 李映涛. 顺北地区中下奥陶统埋深碳酸盐岩储集体特征及成因[J]. 吉林大学学报(地球科学版), 2019, 49(4): 932-946.
[5] 鄢伟, 张光学, 樊太亮, 夏斌, 高志前, 张莉, 杨振, 强坤生. 塔里木盆地塔中—顺托果勒地区奥陶系良里塔格组碳酸盐岩颗粒滩沉积特征[J]. 吉林大学学报(地球科学版), 2019, 49(3): 621-636.
[6] 罗少辉, 李九梅, 王辉. 塔里木盆地麦盖提斜坡皮山北新1井白云质角砾岩地层时代厘定[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1405-1415.
[7] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[8] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[9] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[10] 陈斐然, 张颖, 徐祖新, 谭程, 周肖肖. 全球前寒武—寒武系含油气盆地石油地质特征及成藏主控因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 974-989.
[11] 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73.
[12] 杜治利, 曾昌民, 邱海峻, 杨有星, 张亮. 塔西南叶城凹陷二叠系两套烃源岩特征及柯东1井油源分析[J]. 吉林大学学报(地球科学版), 2016, 46(3): 651-660.
[13] 薛海涛, 田善思, 卢双舫, 刘敏, 王伟明, 王民. 分散可溶有机质的气源意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 52-60.
[14] 汤良杰,邱海峻,云露,杨勇,谢大庆,李萌,蒋华山. 塔里木盆地多期改造-晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1): 1-14.
[15] 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .