吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1193-1203.doi: 10.13278/j.cnki.jjuese.20200114

• 地质工程与环境工程 • 上一篇    下一篇

近三十年长江口横沙岛潮滩湿地地貌演变对河口工程的响应

魏伟, 骆蓓菁, 丁玲   

  1. 上海勘测设计研究院有限公司, 上海 200335
  • 收稿日期:2020-05-05 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:魏伟(1992-),男,硕士,助理工程师,主要从事遥感与地理信息系统海岸带研究,E-mail:weiwei@sidri.com
  • 基金资助:
    上海市科委科研计划项目(18DZ1206600);中国长江三峡集团有限公司科研项目(201903173)

Three Decadal Morphodynamic Responses of Hengsha Island Tidal Flat Wetland to Adjacent Engineering in Yangtze Estuary

Wei Wei, Luo Beijing, Ding Ling   

  1. Shanghai Investigation, Design & Research Institute Co. Ltd, Shanghai 200335, China
  • Received:2020-05-05 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by Shanghai Science and Technology Commission Research Project (18DZ1206600) and the Scientific Research Project of China Three Gorges Group Co., Ltd (201903173)

摘要: 由于人类活动的不断加剧和入海泥沙的日益减少,我国部分河口潮滩湿地已面临严重的侵蚀退化风险,给沿岸城市发展带来巨大威胁,实现河口潮滩湿地的科学管理和合理利用极为紧迫。本研究利用1990—2017年多期长江口深水航道北导堤工程与横沙岛成陆-促淤工程前后区域海图地形数据,使用ArcGIS地理配准、等深线数字化、数字高程模型建立和叠加分析等功能分析长江口横沙岛潮滩湿地地貌、等深线形态与地形冲刷-淤积厚度的时空变化过程。研究结果表明,长江口深水航道北导堤工程与横沙岛成陆-促淤工程的实施,改变了横沙岛潮滩湿地周边水域的水文泥沙动力条件,使得地貌冲淤时空特征发生变化:1)深水航道北导堤工程与横沙岛成陆-促淤工程的实施极大地推动了特征等深线的向外延伸,其中0、2和5 m等深线包络面积年均最大增长率(2009—2013年)分别是工程前(1990—1998年)的42.13、280.73和235.65倍,0~1、1~2、2~3、3~4及4~5 m等深线包络体积整体呈现1990—1998年、1998—2009年、2009—2013年增加,2013—2017年较为明显减少,潮滩湿地"长高不长大"的趋势;2)冲刷-淤积频率特征表现为工程前微淤(1990—1998年)、工程后微淤(1998—2009年)、淤积增加明显(2009—2013年)及微冲(2013—2017年),长江入海泥沙通量的减少对2 m等深线以深区域的潮滩发育可能产生一定影响。

关键词: 河口潮滩湿地, 特征等深线, 地貌冲淤, 工程影响, 横沙岛, 长江口

Abstract: In recent years, with the intensification of human activities and reduction of sediment into the sea, some estuarine tidal flat wetlands in our country have been facing serious erosion and degradation, which poses a huge threat to the development of coastal cities. Therefore, the scientific management and rational use of estuarine tidal flat wetlands are extremely urgent. In this study, the regional chart topography data before and after the multi-phase of Yangtze Estuary deepwater channel north dyke project and the Hengsha Island land forming and silting promoting project from 1990 to 2017 were used to analyze the evolution of the wetland landforms in Hengsha Island, and the ArcGIS geographic registration, contour digitization, digital elevation model establishment, and overlay analysis were used to analyze the landform isobaths changes in morphology, terrain erosion-sediment thickness, and spatiotemporal changes of Hengsha Island. The result indicates that the implementation of the north guide dike project of the deepwater channel of Yangtze Estuary and the land forming and silting promoting project of Hengsha Island has changed the hydrological and sediment conditions to certain extent in the waters around the tidal flat wetlands of Hengsha Island, and its status of landscape erosion and deposition:1) It has greatly promoted the outward orientation of the characteristic isobaths. The maximum annual growth rate of 0, 2,and 5 m isobaths envelope area (2009-2013) is 42.13, 280.73, and 235.65 times that of the project (1990-1998). The overall envelope volume of 0-1, 1-2, 2-3, 3-4, 4-5 m isobaths shows an overall increase in 1990-1998, 1998-2009, and 2009-2013, and the tidal flat wetland shows a trend of "growing up but not extending". 2) The frequency characteristics of erosion-deposition are micro-deposition before engineering (1990-1998), micro-deposition after engineering (1998-2009), significant increase in deposition (2009-2013), and micro-erosion (2013-2017). At the same time, the reduction of sediments from Yangtze Estuary into the sea may have produced a certain impact on the development of tidal flats below the 2 m isobaths.

Key words: estuarine tidal wetland, characteristic isobaths, geomorphic erosion and deposition, engineering effects, Hengsha Island, Yangtze Estuary

中图分类号: 

  • P931.1
[1] 王杰,戴志军,魏稳,等. 基于LiDAR观测的长江河口南汇南滩近期动力地貌研究[J]. 海洋与湖沼,2018,49(4):756-768. Wang jie, Dai Zhijun, Wei Wen, et al. LiDAR-Based Recent Morphodynamic Study of South Nanhui Tidal Flat, Changjiang Estuary[J]. Oceanologia et Limnologia Sinica, 2018, 49(4):756-768.
[2] 计娜,程和琴,杨忠勇,等. 近30年来长江口岸滩沉积物与地貌演变特征[J]. 地理学报,2013,68(7):945-954. Ji Na, Cheng Heqin, Yang Zhongyong, et al. Sedimentary and Morphological Evolution of Nearshore Coast of Yangtze Estuary in the Last 30 Years[J]. Acta Geographica Sinica,2013,68(7):945-954.
[3] 杜景龙. 长江三角洲前缘近十余年的冲淤演变及工程影响研究[J]. 地理与地理信息科学,2012(5):84-89,117. Du Jinglong. Study on Erosion and Accretion Evolvement in the Front Delta of Yangtze River over the Past Decade with the Exploration into the Projects Influences[J]. Geography and Geo-Information Science, 2012(5):84-89, 117.
[4] 茅志昌,虞志英,徐海根. 上海潮滩研究[M]. 上海:华东师范大学出版社,2014. Mao Zhichang, Yu Zhiying, Xu Haigen. Study of Shanghai Tidal Flat[M]. Shanghai:East China Normal University Press, 2014.
[5] 桑永尧,虞志英,金镠. 长江河口横沙东滩自然演变及工程影响[J]. 东海海洋,2003,21(3):15-24. Sang Yongyao, Yu Zhiying, Jin Liu. Natural Evolvement and Effect of Project in the Hengsha East Shoal of the Changjiang River Estuarine[J]. Donghai Marine Science, 2003, 21(3):15-24.
[6] 王维佳,蒋雪中,薛靖波,等. 长江口横沙附近河势变化与可利用港航资源分析[J]. 长江流域资源与环境,2014,23(1):39-45. Wang Weijia, Jiang Xuezhong, Xue Jingbo, et al. Study on Evolution Trend of the Hengsha East Shoal in the Changjiang Estuary and Its Implication for the Waterway Resource[J]. Resources and Environment in the Yangtze Basin, 2014, 23(1):39-45.
[7] 杜景龙,姜俐平,杨世伦. 长江口横沙东滩近30年来自然演变及工程影响的GIS分析[J]. 海洋通报,2007,26(5):43-48. Du Jinglong, Jiang Liping, Yang Shilun. GIS Analysis of the Natural Evolvement of the Hengsha East Shoal of the Yangtze River and the Infects of Projects in the Last Thirty Years[J]. Marine Science Bulletin, 2007, 26(5):43-48.
[8] 陈海英,孙鹏,楼飞,等. 长江口横沙东滩滩涂整治利用和展望[J]. 水运工程,2017(11):152-160. Chen Haiying, Sun Peng, Lou Fei, et al. Regulation Utilization and Prospect of Hengsha East Shoal in the Yangtze Estuary[J]. Port & Waterway Engineering, 2017(11):152-160.
[9] 赵常青. 长江口崇明东滩、北港下段和横沙东滩演变分析[D]. 上海:华东师范大学,2006. Zhao Changqing. The Evolvement of Eastern Chongming Shoal, Lower Reach of North Channel and Eastern Hengsha Shoal in Changjiang Estuary[D]. Shanghai:East China Normal University, 2006.
[10] 郑宗生,周云轩,沈芳. GIS支持下长江口深水航道治理一、二期工程对北槽拦门沙的影响分析[J]. 吉林大学学报(地球科学版),2006,36(1):85-90. Zheng Zongsheng, Zhou Yunxuan, Shen Fang.A GIS-Supported Study of the Influence on the North Passage Bar After Executing Yangtze Estuary Deepwater Channel Regulation Phase I & II Project[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(1):85-90.
[11] 虞志英,恽才兴,何青,等. 横沙东滩吹泥上滩促淤造地工程自然条件及促淤效果分析[R]. 上海:华东师范大学河口海岸学国家重点实验室,2002. Yu Zhiying, Yun Caiying, He Qing, et al. Analysis of Natural Conditions and Effect of Silting Promoting on the Project of Blowing Mud on the Hengsha East Shoal[R]. Shanghai:State Key Labortory of Estuarine and Coastal Research (East China Normal University), 2002.
[12] Yang S L, Milliman J D, Li P, et al. 50000 Dams Later:Erosion of the Yangtze River and Its Delta[J]. Global & Planetary Change, 2011, 75(1/2):14-20.
[13] 沈焕庭,贺松林,潘定安,等. 长江河口最大浑浊带研究[J]. 地理学报,1992,59(5):472-479. Shen Huanting, He Songlin, Pan Ding'an, et al. Study of Turbidity Maximum in the Yangtze Estuary[J]. Acta Geographica Sinica, 1992, 59(5):472-479.
[14] 匡翠萍,董智超,陈括,等. 长江口深水航道及横沙东滩促淤圈围对滞流点的影响[J]. 同济大学学报(自然科学版),2017, 45(11):1621-1628. Kuang Cuiping, Dong Zhichao, Chen Kuo, et al. Impacts of Yangtze Estuary Deepwater Channel Project and Hengsha East Shoal Siltation and Reclamation Project on Stagnation Point[J]. Journal of Tongji University (Natural Science), 2017, 45(11):1621-1628.
[15] 徐海根,虞志英,钮建定,等. 长江口横沙浅滩及邻近海域含沙量与沉积物特征分析[J]. 华东师范大学学报(自然科学版),2013(4):42-54. Xu Haigen, Yu Zhiying, Niu Jianding, et al. Analysis of the Suspended Sediment Concentration and Sedimentation Around the Hengsha Shoal of the Yangtze Estuary and Its Adjacent Region[J]. Journal of East China Normal University (Natural Science), 2013(4):42-54.
[16] 华凯,程和琴,郑树伟. 长江口横沙通道近岸冲刷地貌形成机制[J]. 地理学报,2019,74(7):1363-1373. Hua Kai, Cheng Heqin, Zheng Shuwei.Formation Mechanism of Near-Shore Erosional Topography in the Hengsha Passage of the Yangtze Estuary[J]. Acta Geographica Sinica, 2019, 74(7):1363-1373.
[17] 郭兴杰,程和琴,杨忠勇,等. 长江口北港河势演变及趋势分析[J]. 泥沙研究,2016(5):33-39. Guo Xingjie, Cheng Heqin, Yang Zhongyong, et al. Processes of North Channel and Tendency Analysis of the Yangtze Estuary[J]. Journal of Sediment Research, 2016(5):33-39.
[18] 郭兴杰,王寒梅,史玉金,等. 近年来横沙东滩围垦区前沿地形演化规律及驱动因素分析[J]. 海洋学报,2019, 41(11):142-149. Guo Xingjie, Wang Hanmei, Shi Yujin, et al.Analysis of the Evolution Process and the Driving Factors in the Coast of the Reclamation Area of East Hengsha Shoal During Recent Years[J]. Haiyang Xuebao, 2019, 41(11):142-149.
[19] 曹帅. 横沙东滩圈围工程对周边水环境影响的数值模拟研究[D]. 大连:大连理工大学,2015. Cao Shuai. Numerical Simulation on the Influence of Reclamation Project on Nearby Water Environment in Esatern Hengsha Shoal[D]. Dalian:Dalian University of Technology, 2015.
[20] 严以新,高进,诸裕良,等. 长江口深水航道治理与河床演变关系初探[J]. 河海大学学报(自然科学版),2001,29(5):7-12. Yan Yixin, Gao Jin, Zhu Yuliang, et al. Preliminary Study on Relationship Between Deepwater Channel Regulation and Riverbed Evolution[J]. Journal of Hohai University (Natural Sciences), 2001, 29(5):7-12.
[21] 陈吉余,蒋雪中,何青. 长江河口发育的新阶段、上海城市发展的新空间[J]. 中国工程科学,2013,15(6):20-24. Chen Jiyu, Jiang Xuezhong, He Qing. The New Space of Shanghai City Development and the New Evolution Stage of the Yangtze Estuary[J]. Engineering Sciences, 2013, 15(6):20-24.
[22] 杨世伦. 海岸环境和地貌过程导论[M]. 北京:海洋出版社,2003. Yang Shilun. Introduction to Coastal Environment and Landform Process[M]. Beijing:China Ocean Press, 2003.
[23] Zhu C, Guo L, van Maren D S, et al. Decadal Morphological Evolution of the Mouth Zone of the Yangtze Estuary in Response to Human Interventions[J]. Earth Surface Processes and Landforms, 2019, 44(12):2319-2332.
[1] 牛莹, 赵欣怡, 周云轩, 田波, 王利花. 基于MODIS的长江口表层水体盐度时空分异[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1486-1495.
[2] 魏伟, 周云轩, 田波, 钱伟伟, 湛玉剑, 黄盖先. 基于地面激光扫描的典型海岸带盐沼潮滩地形反演[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1889-1897.
[3] 刘奎, 庄振业, 刘东雁, 叶银灿. 舟山群岛和长江口邻近海域埋藏古河道水文环境特征[J]. J4, 2010, 40(1): 140-147.
[4] 郑宗生,周云轩,沈 芳. GIS支持下长江口深水航道治理一、二期工程对北槽拦门沙的影响分析[J]. J4, 2006, 36(01): 85-0090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037 -1043 .
[2] 束龙仓,李 伟. 北塘水库库底地层渗透系数的随机特性分析[J]. J4, 2007, 37(2): 216 -0220 .
[3] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266 -270 .
[4] 苏小四,林学钰,董维红,万玉玉. 反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J]. J4, 2007, 37(2): 271 -277 .
[5] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215 -0220 .
[6] 杨俊鹏,胡 克,刘玉英. 吉林西部盐碱化土壤碳酸盐的碳稳定同位素特征[J]. J4, 2006, 36(02): 245 -0249 .
[7] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[8] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516 -520 .
[9] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[10] 杨春梅, 李洪奇,陆大卫,张方礼,高 原,邵英超. 不同驱替方式下岩石电阻率与饱和度的关系[J]. J4, 2005, 35(05): 667 -671 .