吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1753-1769.doi: 10.13278/j.cnki.jjuese.20210073

• 地质与资源 • 上一篇    下一篇

大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约

宫昀迪1, 李碧乐1, 李治华1, 于润涛1, 孙永刚1, 张森2   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2021-06-13 出版日期:2021-11-26 发布日期:2021-11-24
  • 通讯作者: 李碧乐(1965-),男,教授,主要从事热液矿床成矿理论与预测、区域成矿作用方面的研究,E-mail:libi@jlu.edu.cn E-mail:libi@jlu.edu.cn
  • 作者简介:宫昀迪(1997-),女,硕士研究生,主要从事岩石学、矿床学方面的研究,E-mail:3198580473@qq.com
  • 基金资助:
    吉林省自然科学基金项目(20180101089JC);吉林省科技发展计划重点项目(20100445)

Petrogenesis and Geological Significance of Granite Porphyry Dike from Xiaokelehe in North Da Hinggan Mountains: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotopic Composition

Gong Yundi1, Li Bile1, Li Zhihua1, Yu Runtao1, Sun Yonggang1, Zhang Sen2   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2021-06-13 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the Natural Science Foundation of Jilin Province (20180101089JC) and the Science and Technology Project of Jilin Province (20100445)

摘要: 为了探讨大兴安岭北段小柯勒河花岗斑岩脉的岩石成因、构造背景及地质意义,本文对其进行了锆石U-Pb年代学、岩石地球化学与Hf同位素的研究。岩石地球化学结果显示:花岗斑岩富硅(w(SiO2)为69.85%~70.48%)、富碱(w(Na2O+K2O)为9.74%~9.89%),贫镁(w(MgO)为0.34%~0.40%)、贫钙(w(CaO)为1.04%~1.20%),A/CNK为0.98~1.02,属于准铝质-弱过铝质系列岩石;具有轻稀土元素富集和重稀土元素亏损的特征,中等Eu负异常,富集大离子亲石元素Rb、K和高场强元素Th、U、Hf、Zr,亏损大离子亲石元素Sr、Ba和高场强元素Nb、Ta、Ti、P。花岗斑岩中的104Ga/Al值为2.32~3.68,分异指数ID为87.63~89.01。综合分析认为小柯勒河花岗斑岩属于分异的I型花岗岩。花岗斑岩锆石U-Pb加权平均年龄为(124.0±0.6)Ma,属于早白垩世晚期。锆石εHft)值为0.5~3.3,二阶段Hf同位素模式年龄TDM2为1 150~970 Ma。结合岩石地球化学特征分析认为花岗斑岩源岩为由亏损地幔衍生的中-新元古代新增生地壳部分熔融的产物,并有少量古老地壳物质的加入。该花岗斑岩形成于早白垩世晚期蒙古-鄂霍茨克洋闭合背景下的伸展环境,此时太平洋板块持续向欧亚大陆俯冲,但对本区影响有限。

关键词: I型花岗岩, 岩石地球化学, 锆石U-Pb定年, Hf同位素, 大兴安岭

Abstract: In this paper, the granite porphyry geochemistry, zircon U-Pb geochronology and Hf isotopes are studied to discuss the petrogenesis, tectonic setting of the granitic porphyry dike, and the relationship between the rock vein and mineralization of Xiaokelehe. Our data show that the samples are characterized by high content of SiO2(69.85%-70.48%) and alkali (9.74%-9.89%), and low content of MgO (0.34%-0.40%) and CaO (1.04%-1.20%). The A/CNK values range from 0.98 to 1.02, the granitic porphyry is quasi-aluminum-weak per-aluminum. The rock is rich in LREE and poor in HREE, with obviously negative Eu anomalies. They are rich in LILEs (Rb and K) and HFSEs (Th, U, Hf, and Zr), and depleted of LILEs (Srand Ba) and HFSEs (Nb, Ta, Ti, and P). The samples have 104Ga/Al values ranging from 2.32 to 3.68 and ID values ranging from 87.63 to 89.01. All these characteristics indicate that the granite porphyry is fractionated I-type granite. The zircon U-Pb dating indicates that the rock was formed in the Early Cretaceous ((124.0±0.6) Ma). The Hf isotope results show that the εHf (t) values of the granite porphyry range from 0.5 to 3.3, and two-stage Hf model ages (TDM2) range from 1 150 to 970 Ma, which indicates that the magma originated from the partial melting of Meso-Neoproterozoic juvenile crust that was derived from the depleted mantle, and there was a small amount of ancient crust added. The granite porphyry was formed in the extensional environment under the background of the Mongolia-Okhotsk closure in the Late Early Cretaceous. At that time, the Paleo-Pacific plate continued to subduct toward the Eurasian continent, but its influence on this area was limited.

Key words: I-type granite, petrogeochemistry, zircon U-Pb geochronology, Hf isotopes, Da Hinggan Mountains

中图分类号: 

  • P581
[1] 余长胜,杨言辰,韩世炯,等.大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义[J].吉林大学学报(地球科学版), 2020, 50(4):1042-1058. Yu Changsheng, Yang Yanchen, Han Shijiong, et al. Petrogenesis of Moyite from Xiagalaiaoyi Pb-Zn Deposit in Great Xing'an Range and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4):1042-1058.
[2] 杨晓平,江斌,杨雅军. 大兴安岭早白垩世火山岩的时空分布特征[J].地球科学, 2019, 44(10):3237-3251. Yang Xiaoping, Jiang Bin, Yang Yajun. Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area[J]. Earth Science, 2019, 44(10):3237-3251.
[3] 程银行,李影,刘永顺,等.松辽盆地西缘早白垩世伸展事件:流纹岩锆石U-Pb年龄、地球化学研究[J].地质学报, 2016, 90(12):3492-3507. Cheng Yinhang, Li Ying, Liu Yongshun, et al. The Tectonic Extensional Event During the Early Cretaceous in the West Margin of Songliao Basin:U-Pb Dating, Geochemistry and Petrogenesis of Rhyolites[J]. Acta Geologica Sinica, 2016, 90(12):3492-3507.
[4] 葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, 15(3):396-407. Ge Wenchun, Lin Qiang, Sun Deyou, et al. Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle Crust Interaction[J]. Acta Petrologica Sinica, 1999, 15(3):396-407.
[5] 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013, 29(2):339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2):339-353.
[6] Zhang J H, Ge W C, Wu F Y, et al. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102(1/2):138-157.
[7] 张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质, 2006, 33(4):816-823. Zhang Xingzhou, Yang Baojun, Wu Fuyuan, et al. Basic Characteristics of Lithospheric Structure in Xingmeng-Jihei Area, China[J]. Geology in China, 2006, 33(4):816-823.
[8] 邵济安,张履桥,牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学:D辑:地球科学,1998, 28(3):193-200. Shao Ji'an, Zhang Lüqiao, Mu Baolei. Tectono-Thermal Evolution of Mesozoic in the Middle and Southern Part of the Great Hinggan Mountains[J]. Science China:Series D:Earth Sciences, 1998, 28(3):193-200.
[9] 熊索菲,何谋惷,姚书振,等.大兴安岭岔路口斑岩钼矿床流体成分及成矿意义[J].地球科学:中国地质大学学报, 2014, 39(7):820-836. Xiong Suofei, He Mouchun, Yao Shuzhen, et al. Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range:Implications for Ore Genesis[J]. Earth Science:Journal of China University of Geosciences, 2014, 39(7):820-836.
[10] Sun Y G, Li B L, Sun F Y, et al. Mineralization Events in the Xiaokele Porphyry Cu (-Mo) Deposit, NE China:Evidence from Zircon U-Pb and K-Feldspar Ar-Ar Geochronology and Petrochemistry[J]. Resource Geology, 2020, 70(3):254-272.
[11] 杨梅,孙景贵,王忠禹,等.大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征[J].吉林大学学报(地球科学版), 2017, 47(2):477-496. Yang Mei, Sun Jinggui, Wang Zhongyu, et al. Petrogenesis and Geological Significance of the Alkali-Rich Granite Porphyry in the Jiawula Cu-Ag-Pb-Zn Deposit in the Western Slope of the Great Xing'an Range:Zircon U-Pb Dating and Geochemical Characteristics[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):477-496.
[12] 韩振新,徐衍强,郑庆道. 黑龙江省重要金属和非金属矿产的矿床成矿系列及其演化[M]. 哈尔滨:黑龙江人民出版社, 2004:150-160. Han Zhenxin, Xu Yanqiang, Zheng Qingdao. Metallogenic Series and Evolution of Important Metallic and Nonmetallic Mineral Deposits in Heilongjiang Province[M]. Harbin:Heilongjiang People's Publishing House, 2004:150-160.
[13] Feng Y Z, Xiao B, Li R C, et al. Alteration Mapping with Short Wavelength Infrared (SWIR) Spectroscopy on Xiaokelehe Porphyry Cu-Mo Deposit in the Great Xing'an Range, NE China:Metallogenic and Exploration Implications[J]. Ore Geology Reviews, 2019, 112:103062.
[14] Jackson S E, Pearson N J, Griffin W L, et al. Belousova the Application of Laser Ablation Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology[J]. Chemical Geology, 2004, 211(1/2):47-69.
[15] Ludwing K R. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center, 2003.
[16] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon Ang Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.
[17] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Earth-Science Reviews, 1994, 37(3/4):215-224.
[18] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263.
[19] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[20] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[21] 张旗,冉皞,李承东. A型花岗岩的实质是什么[J].岩石矿物学杂志, 2012, 31(4):621-626. Zhang Qi, Ran Hao, Li Chengdong. A-Type Granite:What is the Essence[J]. Acta Petrologica et Mineralogica, 2012, 31(4):621-626.
[22] 马鸿文.花岗岩成因类型的判别分析[J].岩石学报, 1992, 8(4):341-350. Ma Hongwen. Discriminant Analysis of Granitic Genetic Types[J]. Acta Petrologica Sinica,1992, 8(4):341-350.
[23] King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391.
[24] 吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报, 1999, 15(2):181-189. Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2):181-189.
[25] Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419.
[26] Cheng Y B, Mao J W. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China:Constraints on Their Petrogenesis and Tectonic Setting[J]. Lithos, 2010, 120(3/4):258-276.
[27] Zhang D Y, Zhou T F, Yuan F, et al. Petrogenesis and Mineralization Potential of a Granite Porphyry Intrusion Beneath the Baishan Mo Deposit, Eastern Tianshan, NW China[J]. Journal of Asian Earth Sciences, 2015, 113:254-265.
[28] 王珂,王连训,马昌前,等.东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义[J].地球科学, 2020, 45(2):400-418. Wang Ke, Wang Lianxun, Ma Changqian, et al. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun[J]. Earth Science, 2020, 45(2):400-418.
[29] 闫慧慧,朱光有,陈志勇,等.塔里木板块东北缘I型花岗岩年代学与地球化学研究[J].岩石学报, 2020, 36(11):3414-3426. Yan Huihui, Zhu Guangyou, Chen Zhiyong, et al. Geochronology and Geochemistry of I-Type Granites in the Northeastern Margin of Tarim Plate[J]. Acta Petrologica Sinica,2020,36(11):3414-3426.
[30] Weaver B L. The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/3/4):381-397.
[31] Saunders A D, Norry M J, Tarney J. Origin of MORB and Chemically-Depleted Mantle Reservoirs:Trace Element Constraints[J]. Journal of Petrology, 1988(1):415-445.
[32] 张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 2006, 22(9):2249-2269. Zhang Qi, Wang Yan, Li Chengdong, et al. Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J]. Acta Petrologica Sinica,2006, 22(9):2249-2269.
[33] Defant M J. Adakites:Some Variations on a Theme[J]. Acta Petrologica Sinica, 2002, 18(2):129-142.
[34] 吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf Isotopic Systematic and Their Applications in Petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220.
[35] 第五春荣,孙勇,林慈銮,等.西宜阳地TTG片麻岩锆石U-Pb定年和Hf同位素地质学[J].岩石学报, 2007, 23(2):253-262. Diwu Chunrong, Sun Yong, Lin Ciluan, et al. Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China[J]. Acta Petrologica Sinica, 2007, 23(2):253-262.
[36] 葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报, 1999, 23(2):423-440. Ge Wenchun, Sui Zhenmin, Wu Fuyuan, et al. Zircon U-Pb Ages and Hf Isotopic Characteristics of the Early Paleozoic Granites in the Northeastern Great Hinggan Mountains and Their Geological Significance[J]. Acta Petrologica Sinica, 1999, 23(2):423-440.
[37] 刘军,武广,邱华宁,等.大兴安岭北部砂宝斯金矿床含金石英脉40Ar/39Ar年龄及其构造意义[J].地质学报, 2013, 87(10):1570-1579. Liu Jun, Wu Guang, Qiu Huaning, et al. 40Ar/39Ar Dating of Gold-Bearing Quartz Vein from the Shabaosi Gold Deposit at the Northern End of the Great Xing'an Range and Its Tectonic Significance[J]. Acta Geologica Sinica, 2013, 87(10):1571-1579.
[38] 周传芳,王献忠,李向文,等.黑龙江省塔河县宝兴沟金矿床中生代侵入岩及其对成矿作用的制约[J].矿床地质, 2018, 37(1):137-150. Zhou Chuanfang, Wang Xianzhong, Li Xiangwen, et al. Mesozoic Intrusive Rocks and Their Constraints on Mineralization in Baoxinggou Gold Deposit in Tahe County, Heilongjiang Province[J]. Mineral Deposits, 2018, 37(1):137-150.
[39] Zhai D, Williams-Jones A E, Liu J, et al. Mineralogical, Fluid Inclusion, and Multiple Isotope (HOS-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China[J]. Economic Geology, 2018, 113(6):1359-1382.
[40] Zeng Q, Guo F, Zhou L, et al. Two Periods of Mineralization in Xiaoxinancha Au-Cu Deposit, NE China:Evidences from the Geology and Geochronology[J]. Geological Journal, 2016, 51(1):51-64.
[41] Zhi Y, Li B, Xi A, et al. Geochronology and Geochemistry of the Major Host Rock of the Dong'an Gold Deposit, Lesser Khingan Range:Implications for Petrogenesis and Metallogenic Setting During the Early-Middle Jurassic in Northeast China[J]. Geochemistry, 2016, 76(2):257-274.
[42] Liu Y, Chu X, Sun J, et al. Early Cretaceous Bimodal Magmatism Related Epithermal Mineralization:A Case Study of the Gaosongshan Gold Deposit in the Northern Lesser Xing'an Range, NE China[J]. Ore Geology Reviews, 2020, 121:103563.
[43] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern DaHinggan Mountains, Northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121(1/2):115-135.
[44] 邓昌州. 大兴安岭北部中生代斑岩铜矿:成岩与成矿[D].长春:吉林大学, 2019. Deng Changzhou. Petrology and Metallogenesis of the Porphyry Cu Deposits in the Northern Great Xing'an Range[D]. Changchun:Jilin University, 2019.
[45] 徐美君,许文良,王枫,等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报, 2013, 29(2):354-368. Xu Meijun, Xu Wenliang, Wang Feng, et al. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing'an Range, NE China and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2013, 29(2):354-368.
[46] 佘宏全,李进文,向安平,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. She Hongquan, Li Jinwen, Xiang Anping, et al. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxing'anling and Its Implications to Geotectonic Evolution[J]. Acta Petrologica Sinica, 2012, 28(2):571-594.
[47] Zhang J H, Ge W C, Wu F Y, et al. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102(1/2):138-157.
[48] 徐美君,许文良,孟恩,等.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J].地质通报, 2011, 30(9):1321-1338. Xu Meijun, Xu Wenliang, Meng En, et al. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Erguna Area, Northeastern Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(9):1321-1338.
[49] 刘阁,吕新彪,陈超,等.大兴安岭嫩江地区中生代双峰式火山岩锆石U-Pb定年、地球化学特征及其地质意义[J].岩石矿物学杂志, 2014, 33(3):458-470. Liu Ge, Lü Xinbiao, Chen Chao, et al. Zircon U-Pb Chronology and Geochemistry of Mesozoic Bimodal Volcanic Rocks from Nenjiang Area in Da Hinggan Mountains and Their Tectonic Implications[J]. Acta Petrologica et Mineralogica, 2014, 33(3):458-470.
[50] 张履桥,邵济安,郑广瑞.内蒙古甘珠尔庙变质核杂岩[J].地质科学, 1998, 33(2):140-146. Zhang Lüqiao, Shao Ji'an, Zheng Guangrui. Metamorphic Core Complex in Ganzhuermiao, Inner Mongolia[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 1998, 33(2):140-146.
[51] 施璐,郑常青,姚文贵,等.大兴安岭中段五岔沟地区蛤蟆沟林场A型花岗岩年代学、岩石地球化学及构造背景研究[J].地质学报, 2013, 87(9):1264-1276. Shi Lu, Zheng Changqing, Yao Wengui, et al. Geochronology, Petro-Geochemistry and Tectonic Setting of the Hamagou Forest Farm A-Type Granites in the Wuchagou Region, Central Great Xinggan Range[J]. Acta Geologica Sinica, 2013, 87(9):1264-1276.
[52] 和越,董玉,和钟铧,等.大兴安岭中北段早白垩世爱林源花岗岩的成因:锆石U-Pb年代学、地球化学及Hf同位素制约[J].世界地质, 2017, 36(3):701-713. He Yue, Dong Yu, He Zhonghua, et al. Petrogenesis of Early Cretaceous Ailinyuan Granites from Northern-Central Da Hinggan Mountains:Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotopes[J]. Global Geology, 2017, 36(3):701-713.
[53] 梁琛岳,刘永江,李伟,等. 大兴安岭北段伸展隆升样式:来自科洛-嘎拉山韧性变形带的证据[J].岩石学报, 2018, 34(10):59-86. Liang Chenyue, Liu Yongjiang, Li Wei, et al. The Extensional Uplift Style of North Part of the Da Hinggan Mountains:Evidences from Ductile Deformation Zone of Keluo-Galashan[J]. Acta Petrologica Sinica, 2018, 34(10):59-86.
[54] 武广,陈衍景,赵振华,等.大兴安岭北端洛古河东花岗岩的地球化学、SHRIMP锆石U-Pb年龄和岩石成因[J].岩石学报, 2009, 25(2):233-247. Wu Guang, Chen Yanjing, Zhao Zhenhua, et al. Geochemistry, Zircon SHRIMP U-Pb Age and Petrogenesis of the East Luoguhe Granites at the Northern of the Great Hinggan Range[J]. Acta Petrologica Sinica, 2009, 25(2):233-247.
[55] Müller D, Groves D I. Potassic Igneous Rocks and Associated Gold-Copper Mineralization[M]. Berlin:Springer, 1997.
[56] 韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘, 2007, 14(3):64-72. Han Baofu. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination[J]. Earth Science Frontiers, 2007, 14(3):64-72.
[57] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour Petrol, 1984, 25(4):956-983.
[1] 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118.
[2] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081.
[3] 杨爱雪, 孙德有, 侯雪刚, 王久良, 张继林, 李临位. 冀东峪耳崖金矿区闪长岩脉地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 416-428.
[4] 王世成, 杨仲杰, 杨菊, 张璟, 孙守亮, 刘长纯. 辽东石庙沟岩体岩石地球化学特征、锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 429-441.
[5] 李守奎, 张世涛, 赵庆红, 黎明. 滇西兰坪皂角场新生代富碱斑岩体锆石U-Pb年代学及岩石地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 169-184.
[6] 尹志刚, 宫兆民, 王春生, 刘松杰, 张圣听, 王冠群, 周小刚, 张志浩. 小兴安岭平顶山一带早侏罗世花岗岩类年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 107-125.
[7] 陆胜, 王可勇, 赵焕利, 相雷, 刘阳, 张志博. 大兴安岭漠河前哨林场侵入岩年代学、岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 126-140.
[8] 王宇晴, 董春艳, 白文倩, 颉颃强, 万渝生. 鲁西莲花山地区新太古代晚期二长花岗岩中的表壳岩包体——SHRIMP锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2021, 51(1): 141-153.
[9] 明添学, 杨清标, 李蓉, 唐忠, 薛戈, 罗建宏, 余海军, 李永平. 滇西加里东期平河复式花岗岩体锆石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1685-1702.
[10] 郑月娟, 张健, 张海华, 张德军, 卞雄飞, 陈树旺, 苏飞, 黄欣, 宋绍钧. 大兴安岭中段晚二叠世林西组介形虫化石及环境意义[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1776-1786.
[11] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323-1339.
[12] 孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1433-1449.
[13] 范飞鹏, 肖惠良, 陈乐柱, 李海立, 刘建雄, 邓中林, 康丛轩, 林耿伟, 陈凯. 粤东莲花山地区多期岩浆锆石年代学、Hf同位素组成及其成矿作用[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1462-1490.
[14] 贺根文, 路思明, 彭琳琳, 于长琦, 李伟, 刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1491-1504.
[15] 熊光强, 刘敏, 张达, 王忠. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .