吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (3): 840-852.doi: 10.13278/j.cnki.jjuese.20210327

• 地质与资源 • 上一篇    下一篇

桂西北金牙金矿床成矿流体性质与成矿机制

李欣航1,白令安1,胡乔帆1,2,谢兰芳1,庞保成1,岳志恒1   

  1. 1.桂林理工大学广西隐伏金属矿床勘查重点实验室,广西桂林541004
    2.中国有色桂林矿产地质研究院有限公司,广西桂林541004
  • 收稿日期:2021-10-14 出版日期:2023-05-26 发布日期:2023-05-26
  • 通讯作者: 白令安(1981—), 男, 教授, 博士, 主要从事矿床地球化学方面的研究, E-mail: bailingan@glut.edu.cn
  • 作者简介:李欣航(1996—), 男, 硕士研究生, 主要从事矿床地球化学方面的研究, E-mail: 1003432112@qq.com
  • 基金资助:
    国家自然科学基金项目(41762007,41362006);广西自然科学基金项目(2014GXNSFBA118213)

 Metallogenic Fluid Properties and Mineralization Mechanism of Jinya Gold Deposit in Northwest Guangxi

Li Xinhang1, Bai Ling’an1, Hu Qiaofan1,2, Xie Lanfang1, Pang Baocheng1, Yue Zhiheng1   

  1. 1. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004,
    Guangxi,China
    2. China Nonferrous Metals (Guilin) Geology and Mining Co., Ltd., Guilin 541004, Guangxi,China
  • Received:2021-10-14 Online:2023-05-26 Published:2023-05-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41762007,41362006) and the Natural Science Foundation of Guangxi (2014GXNSFBA118213)

摘要: 金牙金矿床是滇黔桂“金三角”地区典型的卡林型金矿床之一,矿体明显受断裂构造控制,主要呈似层状、豆荚状、透镜状产于中三叠统百逢组的泥质粉砂岩和粉砂质泥岩中。为探讨成矿流体性质与成矿机制,对研究区流体包裹体进行岩相学研究、显微测温以及激光拉曼成分分析。结果表明,该矿床成矿热液过程可以划分为3个阶段:石英-黄铁矿阶段(Ⅰ)、黄铁矿-毒砂阶段(Ⅱ)和石英-碳酸盐阶段(Ⅲ),其中Ⅱ 阶段为主成矿阶段。流体包裹体岩相学研究显示:成矿期流体包裹体主要为气液两相包裹体,液相成分主要为H2O;气体成分主要为CO2、N2、SO2及CH4,从早阶段到晚阶段平均均一温度分别为189、157、137 ℃;平均w (NaCleq)依次为6.01%、4.18%、2.01%,初始成矿流体具有中低温、低盐度、低密度的特征,含CO2、N2和SO2等挥发分的H2O-NaCl体系流体。成矿早期中高温、还原性的盆地热卤水与周围地层发生了强烈的水岩反应,活化迁移其中的Au和S;主成矿期成矿流体在异常高压与断裂活动驱使下不断向上流动,并与白云石中的Fe等元素反应生成黄铁矿和毒砂,同时与大气降水相混合,温度和盐度快速降低,Au等成矿元素大量卸载;成矿晚期,流体中的成矿元素消耗殆尽,大气降水持续混入,温度和盐度明显下降,成矿作用结束。成矿机制为流体混合与水岩反应。

关键词: 流体包裹体, 成矿流体来源, 矿床成因, 金牙卡林型金矿床, 滇黔桂“金三角”

Abstract: Jinya gold deposit is one of the typical Carlin-type gold deposits in the “Golden Triangle” area of Yunnan, Guizhou and Guangxi provinces. The ore bodies are obviously controlled by fault structures and are mainly layered, pod-shaped, and lenticular in argillaceous siltstone and silty mudstone of the Middle Triassic Baifeng Formation. In order to explore the metallogenic fluid properties and mineralization mechanism, the petrographic study, micro temperature measurement and Laser Raman spectroscopy analysis on the fluid inclusions in the study area were carried out. The metallogenic hydrothermal process of this deposit can be divided into three metallogenic stages: Quartz-pyrite stage (Ⅰ), pyrite-arsenopyrite stage (Ⅱ) and quartz-carbonate stage (Ⅲ), and stage Ⅱ is the main metallogenic stage. The petrographic study of fluid inclusions shows that the fluid inclusions in the metallogenic period are mainly two-phase vapor inclusions, and the liquid phase is mainly water; The gas composition is mainly CO2, N2, SO2 and CH4, and the average homogenization temperature from Ⅰ stage to Ⅲ stage is 189, 157, and 137 ℃, respectively; The average w(NaCleq) is 6.01%, 4.18%, and 2.01% in sequence. The initial ore-forming fluid is characterized by H2O-NaCl system fluid with medium-low temperature, low salinity, low density and contains volatile components such as CO2, N2 and SO2. In the early stage of mineralization, the hot brine in the basin with medium-high temperature and reducibility had a strong water-rock reaction with the surrounding strata, activating and migrating Au and S; In the main metallogenic period, the ore-forming fluid continuously flows upward driven by abnormally high pressure and faulting activities, and reacts with Fe and other elements in dolomite to form pyrite and arsenopyrite. At the same time, it mixes with atmospheric precipitation, the temperature and salinity drop rapidly, and Au and other ore-forming elements are unloaded in large quantities. In the late stage of mineralization, the ore-forming elements in the fluid were consumed, the atmospheric precipitation continued to mix in, the temperature and salinity dropped significantly, and the mineralization ended. The mineralization mechanism is fluid mixing and water-rock reaction.

Key words: fluid inclusion, source of ore-forming fluid, deposit genesis, Jinya Carlin-type gold deposit, Yunnan-Guizhou-Guangxi “Golden Triangle”

中图分类号: 

  • P618.51
[1] 雷恩, 韩世炯, 庞小朋, 胡连成, 韩梓衡, 郭荣强, 陈奕臣. 青海省格尔木市妥拉海河超大型石墨矿床地球化学特征及其成因探讨[J]. 吉林大学学报(地球科学版), 2023, 53(3): 853-865.
[2] 张笑天, 孙景贵, 韩吉龙, 王抒, 余日东, 刘阳, 冯洋洋. 吉林夹皮沟金矿集区三道岔金矿床成矿流体来源与演化:流体包裹体和H-O同位素的制约[J]. 吉林大学学报(地球科学版), 2023, 53(3): 748-766.
[3] 唐名鹰, 朱德全, 丁正江, 陈建, 王炜晓, 董振昆, 高振华, 苗晓军, 郑成龙. 柴北缘阿日特克山斑岩型铜钼矿床流体包裹体、稳定同位素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1525-1539.
[4] 辛 未, 孟元库, 许志河, 孙丰月, 钱 烨. 哀牢山成矿带长安金矿床成因:地质特征、流体包裹体测温和H-O-S-Pb同位素制约[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1610-1625.
[5] 韩强, 云露, 蒋华山, 邵小明, 金仙梅. 塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 645-658.
[6] 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722.
[7] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[8] 李洪梁, 李光明, 丁俊, 张志, 卿成实, 付建刚, 凌晨, 刘宇奇. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1289-1303.
[9] 孙永刚, 李碧乐, 孙丰月, 董峻麟, 钱烨, 姚振. 青海省巴斯湖铅锌矿床M9矿体成因探讨——流体包裹体和H-O-S同位素约束[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1373-1386.
[10] 王勇军, 刘颜, 黄鑫, 徐昌, 沈立军, 张业智, 张兆民. 胶东牟乳成矿带范家庄金矿床成矿流体特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1012-1028.
[11] 梁小龙, 孙景贵, 邱殿明, 徐智涛, 谷小丽, 任泽宁. 大兴安岭西坡比利亚谷银铅锌多金属矿床成因[J]. 吉林大学学报(地球科学版), 2020, 50(3): 781-799.
[12] 孙丰月, 王睿, 王一存, 李顺达, 王可勇, 石开拓, 孙清飞, 王文元. 内蒙古碾子沟钼矿床成矿流体来源、演化及成矿机理[J]. 吉林大学学报(地球科学版), 2020, 50(3): 768-780.
[13] 张子军, 奥琮, 严城民, 杨宇, 郎维雄, 洪鑫科, 杜磊, 李新仁. 老挝华潘省香科菱镁矿地质特征与成因分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 85-96.
[14] 沈崇辉, 赵恩全. 安徽省笔架山绿松石矿床矿石矿物特征及矿床成因[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1591-1606.
[15] 赵迎冬. 流体包裹体中盐度分析与应用——以福山凹陷为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1261-1269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!