吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (3): 748-766.doi: 10.13278/j.cnki.jjuese.20210324

• 地质与资源 • 上一篇    下一篇

吉林夹皮沟金矿集区三道岔金矿床成矿流体来源与演化:流体包裹体和H-O同位素的制约

张笑天1, 2,孙景贵2,韩吉龙2, 3,王抒2,余日东2,刘阳2,冯洋洋2, 4   

  1. 1.东华理工大学核资源与环境国家重点实验室,南昌330013
    2.吉林大学地球科学学院,长春130061
    3.中国地质大学(北京)地球科学与资源学院,北京100083
    4.北部湾大学资源与环境学院,广西钦州535011
  • 收稿日期:2021-10-13 出版日期:2023-05-26 发布日期:2023-05-26
  • 作者简介:张笑天(1989—),男,讲师,博士,主要从事矿床学及成矿理论方面的研究, E-mail: xtzhangeology@163.com
  • 基金资助:
    国家自然科学基金项目(42072085);江西省教育厅科学技术研究项目(GJJ2200755)

Origin and Evolution of Ore-Forming Fluids of the Sandaocha Gold Deposit in the Jiapigou Glod Ore Concentration Area, Jilin Province: Constraints from Fluid Inclusions and H-O Isotopes

Zhang Xiaotian1, 2, Sun Jinggui2, Han Jilong2, 3, Wang Shu2, Yu Ridong2, Liu Yang2, Feng Yangyang2, 4   

  1. 1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
    2. School of Earth Sciences, Jilin University, Changchun 130061, China
    3. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
    4. School of Resource and Environment, Beibu Gulf University, Qinzhou 535011, Guangxi, China
  • Received:2021-10-13 Online:2023-05-26 Published:2023-05-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (42072085) and the Science and Technology Project of Jiangxi Provincial Education Department of Education (GJJ2200755)

摘要: 夹皮沟金矿集区位于华北克拉通北缘东段与兴蒙造山带的拼贴部位,是我国最主要的产金地之一。然而该区金矿床的成矿流体来源和矿床成因类型目前仍存有广泛争议;此外,成矿过程中流体的演化以及成矿机制方面也有待深入研究。为解决上述问题,本文选取该区规模最大且最具代表性的三道岔金矿床为研究对象,在详细野外工作的基础上,对不同成矿阶段的石英开展了系统的流体包裹体显微测温、激光拉曼光谱分析以及H-O同位素测试。矿床地质和岩相学特征表明,三道岔金矿床的成矿过程可以划分为(Ⅰ)乳白色石英阶段、(Ⅱ)石英-黄铁矿阶段、(Ⅲ)石英-多金属硫化物阶段和(Ⅳ)石英-碳酸盐阶段,其中阶段Ⅱ和Ⅲ代表成矿主阶段。在各阶段石英中识别出3种类型的原生流体包裹体,依次为水溶液包裹体(NaCl-H2O,W型)、含CO2水溶液包裹体(NaCl-H2O-CO2,C型)和纯CO2包裹体(PC型)。早阶段与主阶段石英均捕获C型和W型包裹体,主阶段石英还发育少量PC型包裹体,而晚阶段石英中仅见W型包裹体。早、主、晚阶段流体包裹体的均一温度依次为283~411、210~288和131~210 ℃,盐度(w(NaCl))依次为4.26%~17.48%、2.07%~15.76%和2.57%~14.04%。H-O同位素结果表明,初始成矿流体来自深源岩浆提供的岩浆水与少量大气降水的混合,且成矿过程中不断有大气降水的加入。自成矿早阶段至晚阶段,成矿流体逐渐由富含CO2的中温、中低盐度NaCl-H2O-CO2体系演化为以H2O为主的低温、低盐度NaCl-H2O体系。流体上升演化过程中与围岩发生了广泛的水岩反应,压力突降与大气降水的持续加入所引发的流体不混溶导致CO2和其他气相成分(如H2S、CH4等)大量逸出与成矿流体物理化学条件变化,进而造成Au-S络合物分解、金溶解度降低,从而有利于金和其他成矿元素的卸载。综合矿床地质、流体包裹体和H-O同位素研究结果,三道岔金矿床属于中温热液脉型金矿床。

关键词: 流体包裹体, H-O同位素, 成矿流体, 三道岔金矿床, 夹皮沟金矿集区

Abstract: The Jiapigou gold ore concentration area, located in the collage section between the northeastern margin of the North China craton and the Xing’an-Mongolian orogenic belt, is one of the most important gold-producing areas in China. However, the origin of the ore-forming fluids and genetic types of the gold deposits in the Jiapigou gold ore concentration area  are still widely disputed. Moreover, there is still a chronic lack of systematic research on evolution of the ore-forming fluids and ore-forming mechanism. To address the problems above, this paper selects the most representative Sandaocha gold deposit in the Jiapigou gold ore concentration area  as an example to carry out a detailed analysis of fluid inclusions, laser Raman spectroscopy and H-O isotopes. Four stages of mineralization have been identified in the Sandaocha gold  deposit: (Ⅰ) milky quartz, (Ⅱ) quartz-pyrite, (Ⅲ) quartz-polymetallic sulfide, and (Ⅳ) quartz-carbonate. The stages Ⅱ and Ⅲ represent the main gold mineralization. Three types of primary fluid inclusions (FIs) are identified in quartz formed at different stages: NaCl-H2O-CO2 (C-type), NaCl-H2O (W-type) and pure CO2 (PC-type). The early-stage quartz contains C- and W-type FIs, which have homogenization temperatures of 283-411 ℃ and salinities of 4.26%-17.48% NaCl equiv. The main-stage quartz contains all three types of FIs, with homogenization temperatures of 210-288 ℃ and salinities of 2.07%-15.76% NaCl equiv. The late-stage quartz contains only W-type FIs with homogenization temperatures of 131-210 ℃ and salinities of 2.57%-14.04% NaCl equiv. The H-O isotope results indicate that the initial ore-forming fluid is the mixture of magmatic water and a small amount of meteoric water, and the meteoric water was continuously added to the ore-forming fluids during mineralization. The ore-forming fluid system evolved from a moderate-temperature and moderate- to low-salinity NaCl-H2O-CO2 system in the early stage to a NaCl-H2O system with a low temperature and salinity in the late stage. Water-rock interactions generally occurred between ore-forming fluids and metamorphic wall-rocks during fluids migration. The sudden decompression and the addition of meteoric water led to fluid immiscibility and the exsolution of CO2, H2S, and other volatiles. This process destroyed the stability of Au-S complexes and facilitated the precipitation of gold and other ore-forming elements. Comprehensive studies of geology, fluid inclusions and H-O isotopes confirm that the Sandaocha gold deposit is a mesothermal hydrothermal vein gold deposit.

Key words: fluid inclusion, H-O isotope, ore-forming fluid, Sandaocha gold deposit, Jiapigou gold ore concentration area

中图分类号: 

  • P611
[1] 李欣航, 白令安, 胡乔帆, 谢兰芳, 庞保成, 岳志恒. 桂西北金牙金矿床成矿流体性质与成矿机制[J]. 吉林大学学报(地球科学版), 2023, 53(3): 840-852.
[2] 赵克强, 孙景贵, 程琳, 马生明, 王振亮, 古阿雷. 内蒙古白土营子钼矿床成矿年代学及成矿流体特征[J]. 吉林大学学报(地球科学版), 2023, 53(3): 822-839.
[3] 许庆林, 孙丰月, 李碧乐, 杨延乾. 青海东昆仑哈陇休玛钼多金属矿床成矿流体特征及成矿模式[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1512-1524.
[4] 唐名鹰, 朱德全, 丁正江, 陈建, 王炜晓, 董振昆, 高振华, 苗晓军, 郑成龙. 柴北缘阿日特克山斑岩型铜钼矿床流体包裹体、稳定同位素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1525-1539.
[5] 辛 未, 孟元库, 许志河, 孙丰月, 钱 烨. 哀牢山成矿带长安金矿床成因:地质特征、流体包裹体测温和H-O-S-Pb同位素制约[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1610-1625.
[6] 韩强, 云露, 蒋华山, 邵小明, 金仙梅. 塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 645-658.
[7] 智云宝, 孙海瑞, 李风华. 山东栖霞笏山金矿床成因——元素地球化学与流体包裹体证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1552-1569.
[8] 孙永刚, 李碧乐, 孙丰月, 董峻麟, 钱烨, 姚振. 青海省巴斯湖铅锌矿床M9矿体成因探讨——流体包裹体和H-O-S同位素约束[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1373-1386.
[9] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[10] 王勇军, 刘颜, 黄鑫, 徐昌, 沈立军, 张业智, 张兆民. 胶东牟乳成矿带范家庄金矿床成矿流体特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1012-1028.
[11] 梁小龙, 孙景贵, 邱殿明, 徐智涛, 谷小丽, 任泽宁. 大兴安岭西坡比利亚谷银铅锌多金属矿床成因[J]. 吉林大学学报(地球科学版), 2020, 50(3): 781-799.
[12] 孙丰月, 王睿, 王一存, 李顺达, 王可勇, 石开拓, 孙清飞, 王文元. 内蒙古碾子沟钼矿床成矿流体来源、演化及成矿机理[J]. 吉林大学学报(地球科学版), 2020, 50(3): 768-780.
[13] 赵迎冬. 流体包裹体中盐度分析与应用——以福山凹陷为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1261-1269.
[14] 吴永涛, 韩润生. 滇东北矿集区茂租铅锌矿床地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(2): 400-413.
[15] 吴猛, 李怡欣, 刘桂香. 黑龙江省老柞山金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1353-1364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!