吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (3): 987-1000.doi: 10.13278/j.cnki.jjuese.20240035

• 地球探测与信息技术 • 上一篇    下一篇

基于轻量融合语义分割的三维断层地震识别方法

单慧琳1, 2, 3,王兴涛2,徐宜俊1,王志浩1,黄浩瀚1,张银胜1, 2, 3   

  1. 1. 无锡学院电子信息工程学院,江苏无锡214105
    2. 南京信息工程大学电子与信息工程学院,南京210044
    3. 复杂环境智能保障技术教育部重点实验室(南京信息工程大学),南京210044
  • 出版日期:2025-05-26 发布日期:2025-06-06
  • 通讯作者: 张银胜(1975-),男,教授,硕士生导师,主要从事图像处理方面的研究,E-mail:yorkzhang@nuist.edu.cn
  • 作者简介:单慧琳(1981-),女,副教授,硕士生导师,主要从事图像处理和构造地质学方面的研究,E-mail:shanhuilin@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目(62071240,62106111);无锡市科技发展资金“太湖之光”科技攻关(基础研究)项目(K20231004)

A Three-Dimensional Fault Seismic Recognition Method Based on Lightweight Fusion Semantic Segmentation

Shan Huilin1, 2, 3, Wang Xingtao2, Xu Yijun1, Wang Zhihao1, Huang Haohan1, Zhang Yinsheng1, 2, 3   

  1. 1. School of Electronic & Information Engineering, Wuxi University, Wuxi 214105, Jiangsu, China
    2. School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, 
    China
    3. Key Laboratory of Intelligent Support Technology for Complex Environment (Nanjing University of Information Science and 
    Technology), Ministry of Education, Nanjing 210044, China
  • Online:2025-05-26 Published:2025-06-06
  • Supported by:
    Supported by the National Natural Science Foundation of China (62071240, 62106111) and Wuxi “Light of Taihu Lake” Science and Technology Research (Basic Research) Project (K20231004)

摘要: 当前基于深度学习的断层识别方法层出不穷,重点围绕U型网络开展研究,但U型网络使用了大量的常规卷积,在提高提取特征效果的同时忽略了特征冗余和过拟合问题,导致网络复杂度较高。为了在高精度识别的同时减少特征冗余、缓解过拟合问题,本文提出一种轻量型融合语义分割网络(lightweight fusion semantic segmentation network, LF-SeNet)用于三维断层识别。相较于传统的断层识别网络,LF-SeNet将跳跃连接思想和特征融合相结合,其中,轻量型特征融合模块包含三维可分离卷积、SimAM(simple attention module)、Dropout层和有限矩阵乘积操作,有效地保证了特征提取的效果。为了有效降低网络的复杂度,本文将空洞卷积和轻量型特征融合模块相结合,一方面降低了网络的计算量,另一方面减少了常规卷积带来的特征冗余问题。除此之外,本文采用Dropout层和数据增强手段,提高了网络的泛化能力,缓解了过拟合问题。将该方法在FaultSeg3D数据集上进行实验,结果表明,LF-SeNet的参数量为2.56M,浮点运算次数相较于传统的U型网络降低了95.59G,交并比提升了2%。最后,本文使用三维数据合成技术将断层识别图进行可视化操作,实验结果显示LF-SeNet识别出的断层连续且清晰,说明该网络具有较好的泛化能力,证明了LF-SeNet在断层识别问题中的有效性。

关键词: 语义分割, SimAM, 三维深度可分离卷积, 断层识别

Abstract:  At present, deep learning-based fault recognition methods are emerging in an endless stream, focusing on the U-shaped network. However, the U-shaped network uses a large number of conventional convolutions, ignoring the problems of feature redundancy and over-fitting while improving the effect of feature extraction, resulting in high network complexity. In order to ensure the recognition effect and reduce the problem of feature redundancy, this paper proposes a lightweight fusion semantic segmentation network (LF-SeNet) for three-dimensional fault recognition. Compared with the traditional fault recognition network, LF-SeNet combines the idea of skip connection and feature fusion. The feature fusion module includes three-dimensional separable convolution, simple attention mechanism (SimAM), Dropout layer and finite matrix product operation, forming a lightweight feature fusion module. The effect of feature extraction is effectively guaranteed. In order to effectively reduce the complexity of the network, this paper combines the dilated convolution and the lightweight feature fusion module. On the one hand, it reduces the computational complexity of the network, and on the other hand, it reduces the feature redundancy problem caused by conventional convolution. In addition, this paper uses the Dropout layer and data enhancement method to improve the generalization ability of the network and alleviate the problem of overfitting. The method is tested on the FaultSeg3D dataset. The results show that the parameter amount of LF-SeNet is 2.56M, the number of floating-point operations is reduced by 95.59G, and the intersection-over-union ratio is increased by 2% compared with the traditional U-shaped network. Finally, this paper uses three-dimensional data synthesis technology to visualize the fault identification map. The experimental results show that the faults identified by LF-SeNet are continuous and clear, indicating that the network has better generalization ability, which proves the effectiveness of LF-SeNet in fault identification. 


Key words: semantic segmentation, SimAM, three-dimensional depth separable convolution, fault identification

中图分类号: 

  • P631.4
[1] 丁乾龙, 沈金松, 陈双全, 冉尚, 龙刚. 频率域传播矩阵法地震AVA多参数反演[J]. 吉林大学学报(地球科学版), 2025, 55(3): 957-969.
[2] 董春峰, 张岩, 刘小秋, 董宏丽. 基于改进U-Net的微地震事件识别方法[J]. 吉林大学学报(地球科学版), 2025, 55(3): 970-986.
[3] 耿鑫, 王长鹏, 张春霞, 张讲社, 熊登. 基于多尺度特征自注意力模型的地震数据重建方法[J]. 吉林大学学报(地球科学版), 2025, 55(3): 1001-1013.
[4] 巴忠臣, 秦军, 华美瑞, 张宗斌, 秦赛赛, 张稳. 隐蔽性微小断裂智能识别技术在准噶尔盆地MH1井区的应用[J]. 吉林大学学报(地球科学版), 2025, 55(2): 612-626.
[5] 邢慧婷, 冯晅, 刘财, 郭智奇, 逄硕, 乔汉青, .

基于贝叶斯框架的裂缝型储层频变AVO反演及多参数预测 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 657-669.

[6] 李航, 孙宇航, 李佳慧, 李学贵, 董宏丽, .

基于波动方程的地震波数值模拟研究综述 [J]. 吉林大学学报(地球科学版), 2025, 55(2): 627-645.

[7] 靳雪彬, 李丙喜, 张振国, 雷茂盛, 安利双, 丁恺. 匹配追踪分频谱蓝化在叠后地震提频中的应用[J]. 吉林大学学报(地球科学版), 2025, 55(2): 646-656.
[8] 吕华星, 陈兆明, 张振波, 姜大朋, 李克成, 郭伟. 机器学习高分辨融合反演在地层对比中的应用——以珠江口盆地开平凹陷开平A构造带为例[J]. 吉林大学学报(地球科学版), 2025, 55(1): 289-297.
[9] 郑轩, 宗兆云, 付亚群, 骆坤. 海域油气盖层叠前地震反演预测方法及应用[J]. 吉林大学学报(地球科学版), 2024, 54(6): 2128-2141.
[10] 徐杨杨, 商耀达, 孙建国. 基于预条件广义逐次超松弛迭代法的数值格林函数计算方法[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1696-1710.
[11] 于正军, 张军华, 周昊, 任瑞军, 陈永芮, 杨玉龙. 准噶尔盆地东南缘页岩油储层脆性预测与评价[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1711-1723.
[12] 葛康建, 王长鹏, 张春霞, 张讲社, 熊登. 基于粗-细网络模型分步训练的地震数据重建方法[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1396-1405.
[13] 刘财, 商耀达, 鹿琪, 徐杨杨. GPR信号去噪的变分模态分解[J]. 吉林大学学报(地球科学版), 2024, 54(3): 1042-1053.
[14] 王芃, 邵广周, 恒翔天, 蓝笛瑄, 王国顺, 霍科宇. 滑坡面瑞雷波波场模拟及H/V谱比探测[J]. 吉林大学学报(地球科学版), 2024, 54(3): 1031-1041.
[15] 李元燮, 刘财.

基于理性扩展热力学的L-S热声弹性理论框架 [J]. 吉林大学学报(地球科学版), 2024, 54(2): 655-687.

Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!