吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (6): 1867-1884.doi: 10.13278/j.cnki.jjuese.20250272

• 地质与资源 • 上一篇    下一篇

新疆东准地区黄羊山A型花岗岩形成时代与多阶段岩浆作用:来自SIMS锆石U-Pb年代学证据

任云生1,2,徐文坦1,2,李京谋3,4,孙珍军1,2,刘干5   

  1. 1.防灾科技学院地球科学与工程学院,河北廊坊065201
    2.河北省地震动力学重点实验室,河北廊坊065201
    3.中国地质调查局发展研究中心,北京100037
    4.自然资源部矿产勘查技术指导中心,北京100037
    5.中国地质大学(北京)地球科学与资源学院,北京100083
  • 出版日期:2025-11-26 发布日期:2025-12-30
  • 通讯作者: 李京谋(1996—),男,工程师,博士,主要从事成矿规律与找矿预测方面的研究,E-mail:ljm635880094@163.com
  • 作者简介:任云生(1968—),男,教授,博士生导师,主要从事成矿规律与找矿预测方面的研究,E-mail:rys@cidp.edu.cn
  • 基金资助:
    国家自然科学基金项目(42472138)

Multi-Period Magmatic Age and Process of Huangyangshan A-Type Granitic Complex in East Junggar of Xinjiang Province: Evidence from SIMS  Zircon U-Pb Dating

Ren Yunsheng1,2, Xu Wentan1,2, Li Jingmou3,4, Sun Zhenjun1,2, Liu Gan5   

  1. 1. School of Earth Science and Engineering, Institute of Disaster Prevention, Langfang 065201, Hebei,China
    2. Hebei Key Laboratory of Earthquake Dynamics,Langfang 065201, Hebei, China
    3. Development and Research Center, China Geological Survey, Beijing 100037, China
    4. Mineral Exploration Technical Guidance Center, Ministry of Natural Resources, Beijing 100037, China
    5. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
  • Online:2025-11-26 Published:2025-12-30
  • Supported by:
    Supported by the National Natural Science Foundation of China (42472138)

摘要: 大型复式岩体的成岩时代与岩浆演化对于揭示其岩石成因与深部动力学过程具有重要意义。新疆东准地区黄羊山岩体是卡拉麦里富碱侵入岩带内典型的碱性与铝质A型花岗岩共生的复式岩体,岩体内超大型晶质石墨矿床与铝质单元密切共生。该岩体各岩相演化序列和岩浆演化与石墨成矿关系仍存在争议。在详细的野外地质调查和前人资料基础之上,本文对黄羊山岩体不同岩相代表性岩石开展SIMS 锆石U-Pb年代学研究,并探讨了其演化序列和岩浆演化与石墨矿床形成的关系。结果显示:岩体形成于晚石炭世,由南至北发育的细粒黑云母碱长花岗岩、中粗粒黑云母碱长花岗岩、中细粒角闪石碱长花岗岩、中粒钠铁闪石花岗岩和中细粒钠铁闪石花岗岩的成岩年龄分别为(312.7±1.4)、(313.5±1.5)、(302.4±1.9)、(297.7±1.5)和 (297.1±1.5) Ma,呈现从早到晚的岩浆演化序列;铝质A型花岗岩浆活动持续长达15 Ma之久,是岩体内超大型晶质石墨矿床形成的关键因素之一。黄羊山岩体的形成首先经历了岩浆源区钙碱性岩石中黑云母和角闪石脱水熔融形成铝质A型单元,随着幔源高温岩浆或富碱流体的交代,先存钙碱性岩石发生角闪石(和少量黑云母)的部分熔融,最终形成岩体北部的碱性A型单元。


关键词: 黄羊山岩体, A型花岗岩, SIMS 锆石U-Pb年龄, 多阶段岩浆作用, 晶质石墨矿床, 东准噶尔造山带

Abstract:  The petrogenetic age and magmatic evolution of large granitic complexes are significant for elucidating petrogenesis and deep-seated dynamic processes. The Huangyangshan pluton in eastern Junggar, Xinjiang Province, a typical granitic complex within the Kalamaili alkali-rich intrusion belt, is featured by accompanying alkaline and aluminous A-type granites and hosting two large crystalline graphite deposit closely associated in its aluminous unit. However, the petrogenetic sequence of its lithofacies and the relationship between magmatic evolution and graphite mineralization remain debated. Based on detailed field geological investigations and previous data, this study conducted SIMS zircon U-Pb dating analyses on different lithofacies of the Huangyangshan pluton, and discussed its evolution sequence, the relationship between magmatic evolution and graphite deposit formation. The results reveal reveal a clear south-to-north progression: Fine-grained biotite alkali-feldspar granite ((312.7±1.4)Ma), medium-coarse-grained biotite alkali-feldspar granite ((313.5±1.5) Ma), medium-fine-grained amphibole alkali-feldspar granite ((302.4±1.9)Ma), medium-grained arfvedsonite granite ((297.7±1.5)Ma), and medium-fine-grained arfvedsonite granite ((297.1±1.5)Ma), all formed in the Late Carboniferous, showing a clear magmatic evolution sequence from early to late stages. The ~15 Ma duration of aluminous A-type magmatism likely controlled the super-large graphite deposit formation within the pluton. The formation of the Huangyangshan pluton initially involved dehydration melting of biotite and amphibole in calc-alkaline rocks in the magma source area to generate the aluminous A-type unit. Subsequent partial melting of hornblende (+ minor biotite) in the pre-existing calc-alkaline rocks, induced by mantle-derived high-temperature magma or alkali-rich fluid metasomatism, ultimately formed the alkaline A-type unit in the northern part of the pluton.


Key words: Huangyangshan granitic complex, A-type granite, SIMS zircon U-Pb dating, multi-period magmatic process, crystalline graphite deposit, eastern Junggar orogenic belt

中图分类号: 

  • P588.1
[1] 孙铭徽, 李向雨, 刘锦, 张洪祥, 董亚超, 张媛竹卉, 刘芸秀. 华北克拉通辽东半岛晚三叠世林家沟岩体的成因及构造意义[J]. 吉林大学学报(地球科学版), 2025, 55(3): 826-842.
[2] 符安宗, 李成禄, 石国明, 杨文鹏, 杨元江, 郑博, 李金明. 黑龙江多宝山地区晚泥盆世A型花岗斑岩年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2024, 54(3): 811-827.
[3] 叶希青, 孙立影, 徐智涛, 闫东晗, 冯靖乔, 曹戎机. 吉林中部靠山地区早侏罗世正长花岗岩锆石U-Pb年代学、地球化学特征及其动力学意义[J]. 吉林大学学报(地球科学版), 2023, 53(3): 964-983.
[4] 段思宁, 童英, 王文志, 郭磊.

南蒙古额尔德尼早白垩世A型花岗岩年代学、地球化学、Hf同位素特征及其地质意义 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 917-929.

[5] 孙超, 苟军, 孙德有, 冯钊, 田丽. 黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1082-1097.
[6] 邹国庆, 余牛奔, 孙国庆, 黄修保, 尼加提·阿布都逊, 卢观送. 东准噶尔奥依托浪格地区石炭纪双峰式火山岩地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(2): 455-472.
[7] 余长胜, 杨言辰, 韩世炯, 杨昆林, 宋朝阳, 张易航, 王旺. 大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1042-1058.
[8] 郗爱华, 王明智, 葛玉辉, 李碧乐, 王泉, 朱靓. 黑龙江省五道岭地区花岗斑岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1159-1171.
[9] 宋维民, 庞雪娇, 付俊彧, 陶楠, 杨佳林, 杜继宇, 吴桐. 内蒙古科尔沁右翼中旗碱长花岗岩锆石U-Pb年代学、岩石地球化学及其动力学意义[J]. 吉林大学学报(地球科学版), 2015, 45(3): 847-859.
[10] 秦亚, 梁一鸿, 胡兆初, 冯坚, 宋志韬, 李敏. 吉林省集安县上绿水桥铝质A型花岗岩体的地球化学特征及其构造意义[J]. J4, 2012, 42(4): 1076-1083.
[11] 郭奎城, 张文龙, 杨晓平, 王磊, 史冬岩, 于海涛, 苏航. 黑河市五道沟地区早二叠世A型花岗岩成因[J]. J4, 2011, 41(4): 1077-1083.
[12] 李晓敏, 胡瑞忠, 毕献武, 彭建堂. 湘南骑田岭花岗岩岩体地球化学特征及锡成矿潜力[J]. J4, 2010, 40(1): 80-92.
[13] 钟玉婷, 徐义刚. 与地幔柱有关的A型花岗岩的特点--以峨眉山大火成岩省为例[J]. J4, 2009, 39(5): 828-838.
[14] 王涛, 刘燊, 胡瑞忠, 冯彩霞, 齐有强, 冯光英, 王长华. 苏鲁造山带A型花岗岩的元素地球化学及其成因[J]. J4, 2009, 39(4): 676-688.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!