吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 847-859.doi: 10.13278/j.cnki.jjuese.201503116
宋维民1,2, 庞雪娇2, 付俊彧2, 陶楠2, 杨佳林2, 杜继宇2, 吴桐2
Song Weimin1,2, Pang Xuejiao2, Fu Junyu2, Tao Nan2, Yang Jialin2, Du Jiyu2, Wu Tong2
摘要:
对内蒙古科尔沁右翼中旗碱长花岗岩进行了同位素年代学及岩石地球化学研究。碱长花岗岩LA-ICP-MS锆石U-Pb加权平均年龄为(166±1)Ma,表明该侵入体是中侏罗世侵位形成的。岩石学及地球化学成分显示其属于碱性、具A型花岗岩特征。岩石高硅(w(SiO2)=74.80%~76.34%)、富碱(w(Na2O+K2O)=7.94%~8.71%)、高铁镁比(TFeO/MgO=13.54~24.28)、贫钙(w(CaO)=0.10%~0.21%)、贫镁(w(MgO)=0.08%~0.16%)和低钛(w(TiO2)=0.07%~0.10%);稀土配分曲线呈现"海鸥式"分布特征,显示强烈的Eu负异常(δEu=0.09~0.17);微量元素特征显示具有较高质量分数的有Zr(128.95×10-6~156.32×10-6)、Yb(4.93×10-6~5.35×10-6)和Y(40.93×10-6~56.75×10-6),较低质量分数的有Sr(23.16×10-6~37.14×10-6)、Ba(186.13×10-6~231.31×10-6),在微量元素原始地幔标准化蛛网图上显示明显的Sr、Ba和Ti的负异常。以上特征表明,碱长花岗岩为A型花岗岩。岩石具有高的Rb/Sr值(4.26~7.81,平均为6.12)和Rb/Nb值(10.2~14.7,平均为12.7),显示出壳源岩浆的成分特征。综合分析表明,碱长花岗岩为低压下长英质地壳部分熔融的产物。w(Rb)-w(Yb+Ta)图解、w(Rb)-w(Y+Nb)图解、w(Ta)-w(Yb)图解、w(Nb)-w(Y)图解、Ce/Nb-Y/Nb图解、Ce/Nb-Yb/Ta图解及结合区域构造演化研究表明,碱长花岗岩形成于造山后伸展的构造环境,并与松辽盆地及其周围的花岗岩一起暗示松辽盆地是在中侏罗世造山作用之后伸展的构造环境下形成的陆内盆地。
中图分类号:
[1] 王涛.中国东部裂谷盆地油气藏地质[M].北京:石油工业出版社,1997:41-47. Wang Tao. Oil and Gas Geology of Rifting Basins in Eastern China[M]. Beijing:Petroleum Industry Press,1997:41-47.[2] 吴福元,孙德有,李惠民, 等. 松辽盆地基底岩石的锆石U-Pb年龄[J].科学通报,2000,45(6):656-660. Wu Fuyuan,Sun Deyou,Li Huimin, et al. Ziron U-Pb Ages for the Basement Rocks of the Songliao Basin[J].Chinese Science Bulletin,2000,45(6):656-660.[3] Wang P J,Ren Y G,Shan X L,et al. The Cretaceous Volcanic Succession Around the Songliao Basin,NE China:Relationship Between Volcanism and Sedimentation[J].Geol J,2002,37(2):1-19.[4] 张兴洲,杨宝俊,吴福元, 等. 中国兴蒙吉黑地区岩石圈三维结构及演化[M].北京:地质出版社,2001. Zhang Xingzhou, Yang Baojun, Wu Fuyuan, et al. The Three-Dimensional Structures and Evolution of Lithosphere in Northeast China[M]. Beijing:Geological Publishing House,2001.[5] 王五力,李永飞,郭胜哲.中国东北地块群及其构造演化[J].地质与资源,2014,23(1):4-21. Wang Wuli, Li Yongfei, Guo Shengzhe. The Northeast China Block Group and Its Tectonic Evolution[J].Geology and Resources,2014,23(1):4-21.[6] Lu S T, Yang S G,Wu C L,et al. The Late Mesozoic Rifting in the Northeastern China and the Fault-Rifting Basins in East Asia[J]. Science in China:Series B:Chemistry,1987,17(2):185-195.[7] 陈义贤,陈文寄,周新华,等.辽西及邻区中生代火山岩[M].北京:地震出版社, 1997. Chen Yixian, Chen Wenji, Zhou Xinhua, et al. Mesozoic Volcanic Rocks in the Western Liaoning and Neighboring Area[M].Beijing:Seismological Press,1997.[8] Wu F Y, Wilde S A, Zhang G L,et al. Geochronology and Petrogenesis of Post-Orogenic Cu, Ni-Bearing Mafi-Ultramafic Intrusions in Jilin, NE China[J].Journal of Asian Earth Sciences,2004,23:781-797.[9] 付俊彧,宋维民,庞雪娇,等.内蒙古科尔沁右翼中旗地区古生界疑源类化石及其时代[J].地质通报,2012,31(9):1404-1409. Fu Junyu, Song Weimin, Pang Xuejiao, et al. The Acritarch Fossils of Paleozoic Strata in Horqing Right Wing Banner Area of Inner Mongolia and Their Geological Age[J]. Geological Bulletin of China,2012,31(9):1404-1409.[10] Yan Mingcai,Chi Qinghua. The Chemical Compositions of the Continental Crust and Rocks in the Eastern Part of China[M].Beijing:Science Press, 2005.[11] Hofmann A W.Chemical Differentiation of the Earth:The Relationship Between Mantle,Continental Crust,and Oceanic Crust[J].Earth and Planetary Science Letters, 1988,90:297-314.[12] 张旗,王焰,李承东,等. 花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269. Zhang Qi,Wang Yan, Li Chengdong, et al. Granite Classification on the Basis of Sr and Yb Centents and Its Implications[J].Acta Petrologica Sinica,2006,22(9):2249-2269.[13] 宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊1):26-30. Song Biao,Zhang Yuhai,Wan Yusheng, et al. Mount Making and Procedure of the SHRIMP Dating[J].Geological Review,2002,48(Sup.1):26-30.[14] Ludwig K R. Isoplot-A Plotting and Regression Program for Radiogenic-Isotope Data[J]. US Geol Survey Open-File Report,1994(39):91-445.[15] Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.[16] 张旗,王焰,熊小林,等. 埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社,2008. Zhang Qi,Wang Yan, Xiong Xiaolin, et al. Adakite and Granite:Challenge and Opportunity[M].Beijing:China Land Press,2008.[17] 贾小辉,王强,唐功建. A型花岗岩的研究进展及意义[J].大地构造与成矿学,2009,33(3):465-480. Jia Xiaohui,Wang Qiang,Tang Gongjian. A-Type Granites:Research Progress and Implications[J].Geotectonica et Metallogenia,2009,33(3):465-480.[18] Collins W J,Beams S D,White A J R, et al. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80:189-200.[19] Clemens J D,Holloway J R,White A J R. Origin of an A-Type Granite:Experimental Constrains[J].American Mineralogist,1986,71:317-324.[20] Harris C,Marsh J S,Milner S C. Petrology of the Alkaline Core of the Messum Igneous Complex,Namibia:Evidence for the Progressively Decreasing Effect of Crustal Contamination[J].Journal of Petrology,1999,40:1377-1397.[21] Yang J H,Wu F Y,Chung S L, et al. A Hybrid Origin for the Qianshan A-Type Granite,Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence[J].Lithos,2006,89:89-106.[22] Turner S P,Foden J D, Morrison R S. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma:An Example from the Padthaway Ridge,South Australia[J].Lithos,1992,28:151-179.[23] Mushkin A,Navon O,Halicz L,et al. The Petrogenesis of A-Type Magmas from the Amram Massif,Southern Israel[J]. Journal of Petrology,2003,44:815-832.[24] Skjerlie K P,Johnston A D. Vapor-Absent Melting at 10 Kbar of a Biotiteand Amphibole-Bearing Tonalitic Gneiss:Implications for the Generation of A-Type Granites[J].Geology, 1992,20:263-266.[25] Creaser R A,Price R C, Wormald R J. A-Type Granites Revisited:Assessment of a Residual-Source Model[J]. Geology,1991,19:163-166.[26] Auwera J V,Bogaerts M,Lié geois J P,et al. Derivation of the 1.0-0.9 Ga Ferro-Potassic A-Type Granitoids of Southern Norway by Extreme Differentiation from Basic Magmas[J].Precambrian Research,2003,124:107-148.[27] Rapp R P,Watson E B. Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling[J].Journal of Petrology,1995,36:891-931.[28] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M].London:Blackwell,1985:57-72.[29] Loiselle M C, Wones D R. Characteristics and Origin of Anorogenic Granites[J].Geological Society of America Abstract Progressing, 1979,11:468.[30] Sylvester P J. Post-Collisional Alkaline Granites[J].Journal of Geology, 1989,97:261-280.[31] Eby G N.Chenical Subdivision of the A-Type Grani-toids:Petrogenetic and Tectonic Implications[J].Geology,1992,20:641-644.[32] Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and Isotopic(O, Nd, Pb and Sr) Constraints on A-Type Granite:Petrogenesis Based on the Topsails Igneous Suite, Newfound and Appalachians[J]. Journal of Petrology, 1996,37: 1463-1489.[33] 洪大卫,王式光,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学:B:化学,1995,25(4):418-426. Hong Dawei,Wang Shiguang,Han Baofu,et al. Tectonic Setting Classifications and Discrimination Criteria for Alkaline Granites[J].Science in China:Series B: Chemistry,1995,25(4):418-426.[34] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].J Petrol, 1984,25:956-983.[35] 葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749-762. Ge Wenchun, Wu Fuyuan, Zhou Changyong,et al. Zircon U-Pb Ages and Its Significance of the Mesozoic Granites in the Wulanhaote Region, Central Da Hinggan Mountain[J]. Acta Petrologica Sinica,2005,21(3):749-762.[36] 孙德有. 张广才岭中生代花岗岩成因及其地球动力学意义[D]. 长春: 吉林大学, 2001. Sun Deyou.The Origin and Dynamic Mechanism of Mesozoic Granitoids in Zhangguangcailing[D].Changchun:Jilin University, 2001.[37] 高福红,许文良,杨德彬,等.松辽盆地南部基底花岗质岩石锆石LA-ICP-MS U-Pb 定年:对盆地基底形成时代的制约[J].中国科学:D辑:地球科学, 2007,37(3):331-335. Gao Fuhong, Xu Wenliang, Yang Debin, et al. LA-ICP-MS Zircon U-Pb Dating from Granitoids in Southern Basement of Songliao Basin:Constraints on Ages of the Basin Basement[J].Science in China :Series D: Earth Science,2007,37(3):331-335. |
[1] | 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104. |
[2] | 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134. |
[3] | 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049. |
[4] | 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120. |
[5] | 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153. |
[6] | 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625. |
[7] | 高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 内蒙古突泉—科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 769-783. |
[8] | 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586. |
[9] | 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144. |
[10] | 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164. |
[11] | 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745. |
[12] | 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762. |
[13] | 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783. |
[14] | 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364. |
[15] | 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457. |
|